
Advances in Maximum Satisfiability

Jeremias Berg1 Matti Järvisalo1 Ruben Martins2

1University of Helsinki
Finland

2Carnegie Mellon University
USA

September 4, 2020 ECAI’20 Online

What This Tutorial is About

Maximum Satisfiability—MaxSAT
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)

solving
▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:

especially suited for inherently “Boolean” optimization
problems

Tutorial Outline

Three parts:

1. Motivation and basic concepts

2. Practical algorithms for MaxSAT

3. Applications and encodings

Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions

Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions

SAT Solvers

From 100 variables, 200 constraints (early 90s)
up to >10,000,000 vars. and >50,000,000 clauses. in 20 years.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

All Time Winners on SAT Competition 2020 Benchmarks

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
● ●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ● ●●●●

●●●●
●●●● ●● ●●●●

● ● ● ●

●●●●
●●●●
●●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
● ●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●● ●●●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●●
● ●●

●●●●
●●●●● ●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●

●●● ●●●●●● ● ●● ●●● ●●● ●●●● ●● ●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

● ●●●●
●●●●●●●●●● ●●●●●● ●●●●

● ●●● ●●●●●
●● ● ●●●●● ●●●● ● ● ●●● ● ● ●●●

●●●●
●●● ●●● ●● ● ● ● ●● ●

●

●

●

●

●

kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−cb−2018
maple−lcm−dist−2017
maple−comsps−drup−2016
lingeling−2014
abcdsat−2015
lingeling−2013
glucose−2012
glucose−2011
precosat−2009
cryptominisat−2010
minisat−2008
minisat−2006
satelite−gti−2005
rsat−2007
berkmin−2003
zchaff−2004
limmat−2002

Plot provided by Armin Biere

Core NP search procedures for solving various types of
computational problems

SAT Solvers

From 100 variables, 200 constraints (early 90s)
up to >10,000,000 vars. and >50,000,000 clauses. in 20 years.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

All Time Winners on SAT Competition 2020 Benchmarks

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
● ●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ● ●●●●

●●●●
●●●● ●● ●●●●

● ● ● ●

●●●●
●●●●
●●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
● ●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●● ●●●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●●
● ●●

●●●●
●●●●● ●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●

●●● ●●●●●● ● ●● ●●● ●●● ●●●● ●● ●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

● ●●●●
●●●●●●●●●● ●●●●●● ●●●●

● ●●● ●●●●●
●● ● ●●●●● ●●●● ● ● ●●● ● ● ●●●

●●●●
●●● ●●● ●● ● ● ● ●● ●

●

●

●

●

●

kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−cb−2018
maple−lcm−dist−2017
maple−comsps−drup−2016
lingeling−2014
abcdsat−2015
lingeling−2013
glucose−2012
glucose−2011
precosat−2009
cryptominisat−2010
minisat−2008
minisat−2006
satelite−gti−2005
rsat−2007
berkmin−2003
zchaff−2004
limmat−2002

Plot provided by Armin Biere

Core NP search procedures for solving various types of
computational problems

Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability

Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability

Importance of Exact Optimization
Giving Up?
“The problem is NP-hard, so let’s develop
heuristics / approximation algorithms.”

No!
Benefits of provably optimal solutions:
▶ Resource savings

▶ Money
▶ Human resources
▶ Time

▶ Accuracy
▶ Better approximations

▶ by optimally solving simplified problem
representations

$$$

vs

Key Challenge: Scalability
Exactly solving instances of NP-hard optimization problems

Importance of Exact Optimization
Giving Up?
“The problem is NP-hard, so let’s develop
heuristics / approximation algorithms.”

No!
Benefits of provably optimal solutions:
▶ Resource savings

▶ Money
▶ Human resources
▶ Time

▶ Accuracy
▶ Better approximations

▶ by optimally solving simplified problem
representations

$$$

vs

Key Challenge: Scalability
Exactly solving instances of NP-hard optimization problems

Constrained Optimization
Declarative approaches to exact optimization

Model + Solve
1. Modeling:

represent the problem declarative in a constraint language
so that optimal solutions to the constraint model corresponds
to optimal solutions of your problem

2. Solving:
use an generic, exact solver for the constraint language
to obtain, for any instance of your problem, an optimal
solution to the instance

Important aspects
▶ Which constraint language to choose — application-specific
▶ How to model the problem compactly & “well” (for the solver)
▶ Which constraint optimization solver to choose

Constrained Optimization
Declarative approaches to exact optimization

Model + Solve
1. Modeling:

represent the problem declarative in a constraint language
so that optimal solutions to the constraint model corresponds
to optimal solutions of your problem

2. Solving:
use an generic, exact solver for the constraint language
to obtain, for any instance of your problem, an optimal
solution to the instance

Important aspects
▶ Which constraint language to choose — application-specific
▶ How to model the problem compactly & “well” (for the solver)
▶ Which constraint optimization solver to choose

Constrained Optimization Paradigms
Mixed Integer-Linear Programming MIP, ILP
▶ Constraint language:

Conjunctions of linear inequalities
∑k

i=1 cixi
▶ Algorithms: e.g. Branch-and-cut w/Simplex

Finite-domain Constraint Optimization COP
▶ Constraint language:

Conjunctions of high-level (global) finite-domain constraints
▶ Algorithms:

Depth-first backtracking search, specialized filtering
algorithms

Maximum satisfiability MaxSAT
▶ Constraint language:

weighted Boolean combinations of binary variables
▶ Algorithms: building on state-of-the-art CDCL SAT solvers

▶ Learning from conflicts, conflict-driven search
▶ Incremental API, providing explanations for unsatisfiability

MaxSAT Applications

Drastically increasing number of successful applications
▶ Planning, Scheduling, and Configuration
▶ Data Analysis and Machine Learning
▶ Knowledge Representation and Reasoning
▶ Combinatorial Optimization
▶ Verification and Security
▶ Bioinformatics
▶ …

▶ Tens of new problem domains in MaxSAT Evaluations

MaxSAT Applications

Planning, Scheduling, and Configuration
Cost-optimal planning

[Zhang and Bacchus, 2012; Muise, Beck, and McIlraith, 2016]
robot motion planning [Dimitrova, Ghasemi, and Topcu, 2018]
course timetabling

[Demirovic and Musliu, 2017; Manyà, Negrete, Roig, and Soler, 2017; Achá and
Nieuwenhuis, 2014]
staff scheduling

[Demirović, Musliu, and Winter, 2017; Bofill, Garcia, Suy, and Villaret, 2015; Cohen,
Huang, and Beck, 2017]
vehicle configuration [Marcel Kevin and Tilak Raj, 2016]
package upgradeability
[Argelich, Lynce, and Marques-Silva, 2009; Argelich, Berre, Lynce, Marques-Silva, and
Rapicault, 2010; Ignatiev, Janota, and Marques-Silva, 2014]
…

MaxSAT Applications

Data Analysis and Machine Learning
MPE [Park, 2002]
structure learning

[Berg, Järvisalo, and Malone, 2014; Saikko, Malone, and Järvisalo, 2015]
causal discovery [Hyttinen, Saikko, and Järvisalo, 2017b]
causal structure estimation from time series data

[Hyttinen, Plis, Järvisalo, Eberhardt, and Danks, 2017a]
learning explainable decision sets

[Ignatiev, Pereira, Narodytska, and Marques-Silva, 2018b]
interpretable classification rules [Maliotov and Meel, 2018]
constrained correlation clustering [Berg and Järvisalo, 2013, 2017]
neighborhood-preserving visualization

[Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
…

MaxSAT Applications

Further AI Applications
dynamics of argumentation

[Wallner, Niskanen, and Järvisalo, 2017; Niskanen, Wallner, and Järvisalo, 2016b,a]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
inconsistency analysis

[Lynce and Marques-Silva, 2011; Morgado, Liffiton, and Marques-Silva, 2013b]
…

Combinatorial Optimization
Max-Clique

[Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
Steiner tree [de Oliveira and Silva, 2015]
tree-width [Berg and Järvisalo, 2014]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
…

MaxSAT Applications
Verification and Security
Debugging [Safarpour, Mangassarian, Veneris, Liffiton, and Sakallah, 2007; Chen,
Safarpour, Veneris, and Marques-Silva, 2009; Chen, Safarpour, Marques-Silva, and
Veneris, 2010; Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b; Xu,
Rutenbar, and Sakallah, 2003]
user authorization [Wickramaarachchi, Qardaji, and Li, 2009]
reconstructing AES key schedule images

[Liao, Zhang, and Koshimura, 2016]
detecting hardware Trojans [Shabani and Alizadeh, 2018]
malware detection [Feng, Bastani, Martins, Dillig, and Anand, 2017]
QoS [Wakrime, Jabbour, and Hameurlain, 2018; Belabed, Aïmeur, Chikh, and
Fethallah, 2017]
program analysis

[Mangal, Zhang, Nori, and Naik, 2015; Si, Zhang, Grigore, and Naik, 2017; Zhang,
Mangal, Nori, and Naik, 2016]
fault localization

[Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
…

MaxSAT Applications

Bioinformatics
Haplotype inference

[Graça, Marques-Silva, and Lynce, 2011a; Graça, Marques-Silva, Lynce, and Oliveira,
2011b]
generalized Ising models

[Huang, Kitchaev, Dacek, Rong, Urban, Cao, Luo, and Ceder, 2016]
bionetworks [Guerra and Lynce, 2012]
cancer therapy design [Lin and Khatri, 2012]
maximum compatibility in phylogenetics [Korhonen and Järvisalo, 2020]
…

MaxSAT Applications

Bioinformatics
Haplotype inference

[Graça, Marques-Silva, and Lynce, 2011a; Graça, Marques-Silva, Lynce, and Oliveira,
2011b]
generalized Ising models

[Huang, Kitchaev, Dacek, Rong, Urban, Cao, Luo, and Ceder, 2016]
bionetworks [Guerra and Lynce, 2012]
cancer therapy design [Lin and Khatri, 2012]
maximum compatibility in phylogenetics [Korhonen and Järvisalo, 2020]
…
Central to the increasing success:
Advances in MaxSAT solver technology

Benefits of MaxSAT
Provably optimal solutions

Example: Correlation clustering by MaxSAT
[Berg and Järvisalo, 2017]

 15
 20

 35

 55

 100
 150
 200
 300

 700

 2000
 3000
 4000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
os

t o
f C

lu
st

er
in

g

p

SDPC
KC

MaxSAT-Binary

▶ Improved solution costs over approximative algorithms
▶ Good performance even on sparse data (missing values)

Benefits of MaxSAT
Surpassing the efficiency of specialized algorithms

Example:
Learning optimal bounded-treewidth Bayesian networks

[Berg, Järvisalo, and Malone, 2014]

MaxSAT vs Dynamic Programming and MIP

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60

Ti
m

eo
ut

 (s
)

Instances solved

MaxSAT
DP

TwILP
ILP

Basic Concepts

MaxSAT: Basic Definitions

▶ Simple constraint language:
conjunctive normal form (CNF) propositional formulas
▶ More high-level constraints encoded as sets of clauses

Less restrictive than appears—more on this later!
▶ Literal: a boolean variable x or ¬x.
▶ Clause C: a disjunction (∨) of literals. e.g (x ∨ y ∨ ¬z)
▶ Truth assignment τ : a function from Boolean variables to

{0, 1}.
▶ Satisfaction:

τ(C) = 1 if
τ(x) = 1 for some literal x ∈ C, or
τ(x) = 0 for some literal ¬x ∈ C.

At least one literal of C is made true by τ .

MaxSAT: Basic Definitions

MaxSAT
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modeling practical problems.

Central Generalizations of MaxSAT

Weighted MaxSAT
▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied

clauses: τ s.t.
∑
C∈F

wcτ(C) is maximized.

Partial MaxSAT
▶ Some clauses are deemed hard—infinite weights

▶ Any solution has to satisfy the hard clauses
⇝ Existence of solutions not guaranteed

▶ Clauses with finite weight are soft

Weighted Partial MaxSAT
Hard clauses (partial) + weights on soft clauses (weighted)

MaxSAT: Example

Shortest Path
Find shortest path in a grid with horizontal/vertical moves.
Travel from S to G.
Cannot enter blocked squares.

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSAT encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSAT encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSAT encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).
▶ A soft clause of weight 1 for all other squares:

In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

▶ The previous clauses minimize the number of visited squares.
▶ …however, their MaxSAT solution will only visit S and G!
▶ Need to force the existence of a path between S and G by

additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

▶ The previous clauses minimize the number of visited squares.
▶ …however, their MaxSAT solution will only visit S and G!
▶ Need to force the existence of a path between S and G by

additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.

▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

Properties of the encoding
▶ Every solution to the hard clauses is a

path from S to G that does not pass a
blocked square.

▶ Such a path will falsify one negative soft
clause for every square it passes through.
▶ orange path: assign 14 variables in

{S, a, c, h, . . . , t, r,G} to true
▶ MaxSAT solutions:

paths that pas through a minimum
number of squares (i.e., is shortest).
▶ green path: assign 8 variables in

{S, b, g, f, . . . , k,G} to true

MaxSAT: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ The class of binary relations f(x, y) where given x we can

compute y in polynomial time with access to an NP oracle
▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).

MaxSAT: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ The class of binary relations f(x, y) where given x we can

compute y in polynomial time with access to an NP oracle
▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).

MaxSAT: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ The class of binary relations f(x, y) where given x we can

compute y in polynomial time with access to an NP oracle
▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).

Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution, or
UNSATISFIABLE
▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses

Push-Button Solver Technology

Example: $ openwbo mancoosi-test-i2000d0u98-26.wcnf

c Open-WBO: a Modular MaxSAT Solver
c Version: 1.3.1 – 18 February 2015
...
c | Problem Type: Weighted
c | Number of variables: 18169
c | Number of hard clauses: 94365
c | Number of soft clauses: 18267
c | Parse time: 0.02 s
...
o 10548793370
c LB : 15026590
c Relaxed soft clauses 2 / 18267
c LB : 30053180
c Relaxed soft clauses 3 / 18267
c LB : 45079770
c Relaxed soft clauses 5 / 18267
c LB : 60106360

...
c Relaxed soft clauses 726 / 18267
c LB : 287486453
c Relaxed soft clauses 728 / 18267
o 287486453
c Total time: 1.30 s
c Nb SAT calls: 4
c Nb UNSAT calls: 841
s OPTIMUM FOUND
v 1 -2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16 ...
... -18167 -18168 -18169 -18170

Standard Solver Input Format: DIMACS WCNF
▶ Variables indexed from 1 to n
▶ Negation: -

▶ -3 stand for ¬x3

▶ 0: special end-of-line character
▶ One special header “p”-line:

p wcnf <#vars> <#clauses> <top>
▶ #vars: number of variables n
▶ #clauses: number of clauses
▶ top: “weight” of hard clauses.

▶ Any number larger than
the sum of soft clause weights
can be used.

▶ Clauses represented as lists of integers
▶ Weight is the first number
▶ (−x3 ∨ x1 ∨ ¬x45), weight 2:

2 -3 1 -45 0
▶ Clause is hard if weight == top

Example:
mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

MaxSAT Evaluations
https://maxsat-evaluations.github.io

Objectives
▶ Assessing the state of the art in the field of MaxSAT solvers
▶ Collecting publicly available MaxSAT benchmark sets
▶ Tens of solvers from various research groups internationally

participate each year
▶ Standard input format
▶ Tracks for both complete and incomplete solvers

15th MaxSAT Evaluation
https://maxsat-evaluations.
github.io/2020

Affiliated with SAT 2020 conference
 0

 100

 200

 300

 400

 0 600 1200 1800 2400 3000 3600

N
um

be
r o

f i
ns

ta
nc

es

Time in seconds

Unweighted MaxSAT: Number y of instances solved in x seconds

MaxHS (2020)
RC2 (2018-19)

Open-WBO (2017)
WPM3 (2015-16)

Open-WBO (2014)
QMaxSAT (2013)
QMaxSAT (2012)
QMaxSAT (2011)
QMaxSAT (2010)

https://maxsat-evaluations.github.io
https://maxsat-evaluations.github.io/2020
https://maxsat-evaluations.github.io/2020

Progress in MaxSAT Solver Performance

 0

 100

 200

 300

 400

 0 600 1200 1800 2400 3000 3600

N
um

be
r o

f i
ns

ta
nc

es

Time in seconds

Unweighted MaxSAT: Number y of instances solved in x seconds

MaxHS (2020)
RC2 (2018-19)

Open-WBO (2017)
WPM3 (2015-16)

Open-WBO (2014)
QMaxSAT (2013)
QMaxSAT (2012)
QMaxSAT (2011)
QMaxSAT (2010)

Comparing some of the best solvers from 2010–2020:
In 2020: 81% more instances solved than in 2010!
▶ On same computer, same set of benchmarks:

576 unweighted MaxSAT Evaluation 2020 instances

MaxSAT Solving:
Practical Algorithms for

MaxSAT

Types of MaxSAT Solvers

MaxSAT Solver
Practical implementation of an algorithm for finding (optimal)
solutions to MaxSAT instances

Complete vs Incomplete MaxSAT Solvers
▶ Complete:

Guaranteed to output a provably optimal solution to any
instance
(given enough resources (time & space))

▶ “Incomplete”:
Tailored to provide “good” solutions quickly
(potentially) no guarantees on optimality of solutions

Availability: Some Recent MaxSAT Solvers
Examples of recent solvers
Complete
▶ RC2 https://pysathq.github.io/docs/html/api/examples/rc2.html

▶ Maxino https://alviano.net/software/maxino

▶ UWrMaxSAT https://github.com/marekpiotrow/UWrMaxSat

▶ OpenWBO http://sat.inesc-id.pt/open-wbo

▶ MaxHS http://maxhs.org

▶ QMaxSAT https://sites.google.com/site/qmaxsat

Incomplete
▶ Loandra https://github.com/jezberg/loandra

▶ Open-WBO-Inc https://github.com/sbjoshi/Open-WBO-Inc

▶ Open-WBO-TT http://www.cs.tau.ac.il/research/alexander.nadel

▶ SATLike http://lcs.ios.ac.cn/~caisw/MaxSAT.html

https://pysathq.github.io/docs/html/api/examples/rc2.html
https://alviano.net/software/maxino
https://github.com/marekpiotrow/UWrMaxSat
http://sat.inesc-id.pt/open-wbo
http://maxhs.org
https://sites.google.com/site/qmaxsat
https://github.com/jezberg/loandra
https://github.com/sbjoshi/Open-WBO-Inc
http://www.cs.tau.ac.il/research/alexander.nadel
http://lcs.ios.ac.cn/~caisw/MaxSAT.html

Availability

Open Source
Starting from 2017, solvers need to be open-source in order to
participate in MaxSAT Evaluations
▶ Incentive for openness
▶ Allow other to build on and test new ideas on establish solver

source bases
https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/

Complete MaxSAT Solving

Types of Complete Solvers

▶ Branch and Bound
▶ Can be effective of small-but hard & randomly generated

instances
▶ SAT-based MaxSAT algorithms

▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Focus here: SAT-based MaxSAT solving
▶ Make use of iterative SAT solver calls
▶ Key to solving very large real-world problem instances as

MaxSAT

SAT-based MaxSAT
Algorithms

SAT Solvers

Formula SAT Solver

Satisfying
assignment

Unsatisfiable
subformula

SAT

UNSAT

Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

▶ Satisfying assignment:
▶ Assignment to the variables that evaluates the formula to true

▶ τ = {x1 = 1, x2 = 1, x3 = 0}

Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

▶ Satisfying assignment:
▶ Assignment to the variables that evaluates the formula to true
▶ τ = {x1 = 1, x2 = 1, x3 = 0}

Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable

▶ Unsatisfiable subformula (core):
▶ F′ ⊆ F, such that F′ is unsatisfiable

Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable
▶ Unsatisfiable subformula (core):

▶ F′ ⊆ F, such that F′ is unsatisfiable

Model-Improving MaxSAT

Upper Bound Search for MaxSAT

F

Find upper bound k for
#unsatisfied soft clauses

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Upper Bound Search for MaxSAT

F

Can we unsatisfy
less than k clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

F⇝ F′

Upper Bound Search for MaxSAT

F′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Upper Bound Search for MaxSAT

F′′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Model-Improving Algorithm
Shortest Path

Intuition

1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6

SAT-SOLVE(H)

SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB

3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10

UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)

SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10

UB = 10

UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10

UB = 8

UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8

τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10UB = 8

UB = 8

UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10UB = 8UB = 8

UB = 6

SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8

τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Relax all soft clauses
▶ Relaxation variables:

▶ R = {r1, r2, r3, r4}
▶ If a soft clause ωi is unsatisfied, then ri = 1
▶ If a soft clause ωi is satisfied, then ri = 0

Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

R = {r1, r2, r3, r4}

▶ Formula is satisfiable
▶ τ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

▶ Goal: Minimize number of relaxation variables assigned to 1

Can we unsatisfy less than 2 soft clauses?
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ r2 and r3 were assigned truth value 1:
▶ Current solution unsatisfies 2 soft clauses

▶ Can less than 2 soft clauses be unsatisfied?

Can we unsatisfy less than 2 soft clauses?
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈R ri ≤ 1)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Add cardinality constraint that excludes solutions that
unsatisfies 2 or more soft clauses:
▶ CNF(r1 + r2 + r3 + r4 ≤ 1)

Can we unsatisfy less than 2 soft clauses? No!
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈R ri ≤ 1)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Formula is unsatisfiable:
▶ There are no solutions that unsatisfy 1 or less soft clauses

Can we unsatisfy less than 2 soft clauses? No!
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Optimal solution: given by the last model and corresponds
to unsatisfying 2 soft clauses:
▶ τ = {x1 = 1, x2 = 0, x3 = 0}

Model-Improving Algorithm
Summary

▶ Model-improving can be very efficient when:
▶ The number of soft clauses is small
▶ The optimal solution corresponds to unsatisfying the majority

of soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ QMaxSAT [Koshimura, Zhang, Fujita, and Hasegawa, 2012]
▶ Pacose [Paxian, Reimer, and Becker, 2018]

▶ Challenges:
▶ Constraint that restricts the UB grows with the number of soft

clauses (weights of the soft clauses)

▶ Alternatives:
▶ What other kind of search can we perform?
▶ What if we start searching from the lower bound?

Core-Guided MaxSAT
Solving

Lower Bound Search for MaxSAT

F

Can we satisfy all
soft clauses?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F

Can we satisfy all
soft clauses?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

F⇝ F′

Lower Bound Search for MaxSAT

F′

Can we satisfy all
soft clauses but 1?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F′

Can we satisfy all
soft clauses but 1?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

F′ ⇝ F′′

Lower Bound Search for MaxSAT

F′′

Can we satisfy all
soft clauses but 2?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F′′

Can we satisfy all
soft clauses but 2?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Unsatisfiability-based Algorithm
Shortest Path

Intuition

1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB
3. Otherwise, an optimal model τ has been found

LB = 0

LB = 0LB = 1LB = 1LB = {2, . . . 5}LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiableFormula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable

2. If it is unsatisfiable, then increase LB
3. Otherwise, an optimal model τ has been found

LB = 0

LB = 0LB = 1LB = 1LB = {2, . . . 5}LB = 6

SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiableFormula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB

3. Otherwise, an optimal model τ has been found

LB = 0

LB = 0

LB = 1LB = 1LB = {2, . . . 5}LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiable

Formula is unsatisfiableFormula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB

3. Otherwise, an optimal model τ has been found

LB = 0LB = 0

LB = 1

LB = 1LB = {2, . . . 5}LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiableFormula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB

3. Otherwise, an optimal model τ has been found

LB = 0LB = 0LB = 1

LB = 1

LB = {2, . . . 5}LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiable

Formula is unsatisfiable

Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB

3. Otherwise, an optimal model τ has been found

LB = 0LB = 0LB = 1LB = 1

LB = {2, . . . 5}

LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiable

Formula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB
3. Otherwise, an optimal model τ has been found

LB = 0LB = 0LB = 1LB = 1LB = {2, . . . 5}

LB = 6

SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiableFormula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiability-based algorithm
Summary

▶ Challenges:
▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver that uses this algorithm:
▶ There exists better unsatisfiability-based algorithms

▶ Alternatives:
▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses

MSU3 Core-Guided Algorithm
Shortest Path

Intuition

1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 0LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable

2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 0LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}

SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 0

LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}

Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 0

LB = 1,R = {a, b}

LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 0LB = 1,R = {a, b}

LB = 1,R = {a, b}

LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}

Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}

Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 0LB = 1,R = {a, b}LB = 1,R = {a, b}

LB = {2, . . . 5},R = {a, b, c, g, . . .}

LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}

Formula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 0LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}

LB = 6,R = {a, b, . . .}

SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Relax non-relaxed soft clauses in unsatisfiable core:
▶ Add cardinality constraint that excludes solutions that

unsatisfies 2 or more soft clauses:
▶ CNF(r1 + r2 ≤ 1)

▶ Relaxation on demand instead of relaxing all soft clauses
eagerly

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + . . .+ r4 ≤ 2)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Relax non-relaxed soft clauses in unsatisfiable core:
▶ Add cardinality constraint that excludes solutions that

unsatisfies 3 or more soft clauses:
▶ CNF(r1 + r2 + r3 + r4 ≤ 2)

▶ Relaxation on demand instead of relaxing all soft clauses
eagerly

MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + . . .+ r4 ≤ 2)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Formula is satisfiable:
▶ τ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

▶ Optimal solution unsatisfies 2 soft clauses

MSU3 Core-Guided Algorithm
Summary

▶ MSU3 algorithm can be very efficient when:
▶ The size of the cores found at each iteration are small
▶ The optimal solution corresponds to satisfying the majority of

soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ Open-WBO [Martins, Manquinho, and Lynce, 2014b]

▶ Challenges:
▶ Constraint that restricts the LB grows with the size of cores
▶ Does not capture local core information:

▶ In 2nd iteration for the shortest path example MSU3 used the
cardinality constraint: (ra + rb + rc + rg ≤ 2)

▶ But at this stage we actually know something stronger:
(ra + rb ≤ 1) and (rc + rg ≤ 1)

▶ Alternatives:
▶ Fu-Malik algorithm encodes each core separately by relaxing

each soft clause multiple times

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Relax unsatisfiable core:
▶ Add relaxation variables
▶ Add AtMost1 constraint

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

S: x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ ¬x1 ∨ r5 ¬x3 ∨ x1 ∨ r6

▶ Relax unsatisfiable core:
▶ Add relaxation variables
▶ Add AtMost1 constraint

▶ Soft clauses may be relaxed multiple times

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

S: x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ ¬x1 ∨ r5 ¬x3 ∨ x1 ∨ r6

▶ Formula is satisfiable
▶ An optimal solution would be:

▶ τ = {x1 = 1, x2 = 0, x3 = 0}

Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is satisfiable
▶ An optimal solution would be:

▶ τ = {x1 = 1, x2 = 0, x3 = 0}

▶ This assignment unsatisfies 2 soft clauses

Fu-Malik Core-Guided Algorithm
Summary

▶ Encoding cardinality constraints into CNF is efficient since it
only uses AtMost 1 constraints

▶ Previous MaxSAT solvers that used this algorithm:
▶ WBO [Manquinho, Marques-Silva, and Planes, 2009]
▶ WPM1 [Ansótegui, Bonet, and Levy, 2009]

▶ Challenges:
▶ Number of relaxation variables per soft clause can grow

significantly
▶ Multiple cardinality constraints

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

Fu-Malik [Fu and Malik, 2006]

▶ First core-guided algorithm for MaxSAT
▶ Uses multiple relaxation variables per soft clause
▶ Only requires AtMost1 constraints

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

MSU3 [Marques-Silva and Planes, 2007]

▶ Uses one relaxation variable per soft clause
▶ Requires cardinality / pseudo-Boolean constraints

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

WBO [Manquinho, Marques-Silva, and Planes, 2009]
WPM1 [Ansótegui, Bonet, and Levy, 2009]

▶ Generalizes Fu-Malik algorithm to weighted problems
▶ Efficient implementation of the Fu-Malik algorithm

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

WPM2 [Ansótegui, Bonet, and Levy, 2010]

▶ Only one relaxation per soft clause
▶ Group intersecting cores into disjoint covers
▶ Uses a cardinality constraint per cover

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

BCD [Heras, Morgado, and Marques-Silva, 2011]

▶ Uses binary search in core-guided algorithms

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

OpenWBO [Martins, Joshi, Manquinho, and Lynce, 2014a]

▶ Improves the MSU3 algorithm with incremental construction
of cardinality constraints

▶ Efficient implementation of the MSU3 algorithm

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

Eva [Narodytska and Bacchus, 2014]

▶ Uses MaxSAT resolution to refine the formula instead of using
AtMost1 constraints

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

OLL [Andres, Kaufmann, Matheis, and Schaub, 2012]
[Morgado, Dodaro, and Marques-Silva, 2014]

WPM3 [Ansótegui, Didier, and Gabàs, 2015]
▶ Introduce new variables to represent cardinality constraints
▶ d = r1 + r2 + r3 ≤ 1
▶ Soft clause (d, 1) is introduced

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

OpenWBO.RES [Neves, Martins, Janota, Lynce, and Manquinho, 2015]

▶ Uses resolution-based graphs to partition soft clauses
OpenWBO.RES [Neves, Martins, Janota, Lynce, and Manquinho, 2015]
Maxino [Alviano, Dodaro, and Ricca, 2015]

▶ Construction of the cardinality constraint uses core structure

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

RC2 [Ignatiev, Morgado, and Marques-Silva, 2018a]
UWrMaxSat [Piotrow, 2019]
EvalMaxSAT [Avellaneda, 2020]

▶ Efficient implementations of the OLL algorithm
▶ OLL algorithm is currently the most used one

Implicit Hitting Set Algorithms
for MaxSAT

[Davies and Bacchus, 2011, 2013b,a]

Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s ̸= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.

Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s ̸= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.

Hitting Sets and UNSAT Cores

Key insight
To find an optimal solution to a MaxSAT instance F,
it suffices to:
▶ Find an (implicit) hitting set hs of the UNSAT cores of F.

▶ Implicit refers to not necessarily having all MUSes of F.
▶ Find a solution to F \ hs.

Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT

Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.
Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT

Implicit Hitting Set Approach to MaxSAT

“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Provide explanations for unsatisfiability in terms of cores
▶ Instead of adding clauses to / modifying the input MaxSAT

instance:
each SAT solver call made on a subset of the clauses in the
instance

▶ IP solvers at optimization
▶ Instead of directly solving the input MaxSAT instance:

solve a sequence of simpler hitting set problems over the cores

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

H, S
hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

3. Update core set
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

4. Min-cost HS of K
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

5. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of H ∧ S by hs:
any solution to H ∧ (S \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve H ∧ (S \ ∅)

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve H ∧ (S \ ∅) ⇝ UNSAT core K = {C1,C2,C3,C4}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Update K := K ∪ {K}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Solve minimum-cost hitting set problem over K

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Solve minimum-cost hitting set problem over K ⇝ hs = {C1}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ SAT solve H ∧ (S \ {C1})

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ SAT solve H ∧ (S \ {C1}) ⇝ UNSAT core
K = {C9,C10,C11,C12}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Update K := K ∪ {K}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Solve minimum-cost hitting set problem over K

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C1,C9}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ SAT solve H ∧ (S \ {C1,C9})

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ SAT solve H ∧ (S \ {C1,C9})
⇝ UNSAT core K = {C3,C4,C7,C8,C11,C12}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Update K := K ∪ {K}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Solve minimum-cost hitting set problem over K

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C4,C9}

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ SAT solve H ∧ (S \ {C4,C9})

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ SAT solve H ∧ (S \ {C4,C9}) ⇝ SATISFIABLE.

MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ SAT solve H ∧ (S \ {C4,C9}) ⇝ SATISFIABLE.
Optimal cost: 2 (cost of hs).

Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a disjoint phase for obtaining several cores before/between

hitting set computations,
combinations of greedy and exact hitting sets computations

[Davies and Bacchus, 2011, 2013b,a; Saikko, Berg, and Järvisalo, 2016]

▶ LP-solving techniques such as reduced cost fixing
[Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

▶ abstract cores [Berg, Bacchus, and Poole, 2020]

▶ …

Some of these optimizations are integral for making the solvers
competitive.

Implicit Hitting Set

▶ Effective on range of MaxSAT problems including large ones.
▶ Superior to other methods when there are many distinct

weights.
▶ Usually superior to CPLEX.

Incomplete MaxSAT Solving

Why Incomplete Solving?

▶ Scalability
▶ Proving optimality often the most challenging step of

complete algorithms
▶ Proofs of optimality not always necessary

▶ Finding good solutions fast

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ In other words: essentially all complete solvers can be seen as

incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm

▶ However: also most implementations of core-guided and IHS
algorithms.

▶ In other words: essentially all complete solvers can be seen as
incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.

▶ In other words: essentially all complete solvers can be seen as
incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ In other words: essentially all complete solvers can be seen as

incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ In other words: essentially all complete solvers can be seen as

incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

Approaches to Incomplete MaxSAT

Model-Improving Incomplete Search
How to improve the model-improving algorithm for incomplete
search.
complete & any-time

Stochastic Local Search (SLS)
Quickly traverse the search space by local changes to current
solution incomplete

Core-Boosted search
Combine core-guided and model-improving search.
complete & any-time

SLS with a SAT solver
Local search over which soft clauses should be satisfied, check with
a SAT solver. incomplete

Model-Improving Algorithm for
Incomplete Solving

Recall
Model-Improving Algorithm

Intuition
Improve a best known solution with a SAT solver until no better
ones can be found.

UB = 10
SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:

▶ Partition soft clauses
▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}
{(¬e), (¬f), (¬g), (¬h)}{(¬e), (¬f), (¬g), (¬h)}
{(¬i), (¬j), (¬k), (¬l)}{(¬i), (¬j), (¬k), (¬l)}
{(¬m), (¬n), (¬o)(¬p)}{(¬m), (¬n), (¬o)(¬p)}
{(¬q), (¬r), (¬t), (¬u)}{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}
{(¬e), (¬f), (¬g), (¬h)}{(¬e), (¬f), (¬g), (¬h)}
{(¬i), (¬j), (¬k), (¬l)}{(¬i), (¬j), (¬k), (¬l)}
{(¬m), (¬n), (¬o)(¬p)}{(¬m), (¬n), (¬o)(¬p)}
{(¬q), (¬r), (¬t), (¬u)}{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}
{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)

MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}
{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)

MODEL-IMPROVE
(
H,S1 ∪ S2)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}
{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}
{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses
▶ Rescale weights.

▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses
▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100

Stochastic Local Search for
Incomplete MaxSAT

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.

2. Iteratively flip literals.
3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.
2. Iteratively flip literals.

3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.
2. Iteratively flip literals.

3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.
2. Iteratively flip literals.

3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.
2. Iteratively flip literals.

3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.
2. Iteratively flip literals.
3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:

▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1

▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:

▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1

▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:
▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1

▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:
▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

Core-Boosted Search for Incomplete
MaxSAT

Core-Boosted Search - Intuition
Berg et al. [2019]

Recall - Core-Guided search
▶ Extract a core K
▶ Relax the instance s.t. one clause from K can be unsatisfied in

future iterations
▶ Continue until no more cores can be found.

Alternative view
▶ Any solution to F falsifies at least one clause in K

▶ K proves an additional LB of 1 on cost(F).
▶ ”Relaxing the instance” → ”Lowering cost(F) by 1”

Core-Boosted Search - Intuition
Berg et al. [2019]

Recall - Core-Guided search
▶ Extract a core K
▶ Relax the instance s.t. one clause from K can be unsatisfied in

future iterations
▶ Continue until no more cores can be found.

Alternative view
▶ Any solution to F falsifies at least one clause in K

▶ K proves an additional LB of 1 on cost(F).
▶ ”Relaxing the instance” → ”Lowering cost(F) by 1”

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.

Local Search with a SAT Solver

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))
Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0
SATSOLVE(H ∧

∧
C∈FIXED C ∧ (¬a))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))
Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6

UB = 6
τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))
Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0
SATSOLVE(H ∧

∧
C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))
Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

Further improvements by more sophisticated ways of
ordering soft clauses

State-of-the-art performance on weighted instances

(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.

(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years

▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.

Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years

▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.

Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.

Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.

Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.
Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Real-World Applications of
MaxSAT

Overview of Applications

Examples of real-world applications:
▶ Package upgradeability
▶ Learning interpretable classification rules

Overview of Applications

Examples of real-world applications:
▶ Package upgradeability
▶ Learning interpretable classification rules

Real-World Applications of
MaxSAT:

Package Upgradeability

Software Package Upgradeability Problem

Software Package Upgradeability Problem

Software Package Upgradeability Problem

Software Package Upgradeability Problem

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

▶ Set of packages we want to install: {p1, p2, p3, p4}
▶ Each package pi has a set of dependencies:

▶ Packages that must be installed for pi to be installed
▶ Each package pi has a set of conflicts:

▶ Packages that cannot be installed for pi to be installed

Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?

Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?
▶ Encoding dependencies:

▶ p1 ⇒ (p2 ∨ p3) ≡ (¬p1 ∨ p2 ∨ p3)
▶ p2 ⇒ p3 ≡ (¬p2 ∨ p3)
▶ p3 ⇒ p2 ≡ (¬p3 ∨ p2)
▶ p4 ⇒ (p2 ∧ p3) ≡ (¬p4 ∨ p2) ∧ (¬p4 ∨ p3)

Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?
▶ Encoding conflicts:

▶ p1 ⇒ ¬p4 ≡ (¬p1 ∨ ¬p4)
▶ p3 ⇒ ¬p4 ≡ (¬p3 ∨ ¬p4)

Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?
▶ Encoding installing all packages:

▶ (p1) ∧ (p2) ∧ (p3) ∧ (p4)

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ φ = (¬p1 ∨ p2 ∨ p3) ∧ (¬p2 ∨ p3) ∧ (¬p3 ∨ p2) ∧ (¬p4 ∨ p2) ∧
(¬p4∨p3)∧(¬p1∨¬p4)∧(¬p3∨¬p4)∧(p1)∧(p2)∧(p3)∧(p4)

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ φ = (¬p1 ∨ p2 ∨ p3) ∧ (¬p2 ∨ p3) ∧ (¬p3 ∨ p2) ∧ (¬p4 ∨ p2) ∧
(¬p4∨p3)∧(¬p1∨¬p4)∧(¬p3∨¬p4)∧(p1)∧(p2)∧(p3)∧(p4)

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ φ = (¬p1 ∨ p2 ∨ p3) ∧ (¬p2 ∨ p3) ∧ (¬p3 ∨ p2) ∧ (¬p4 ∨ p2) ∧
(¬p4∨p3)∧(¬p1∨¬p4)∧(¬p3∨¬p4)∧(p1)∧(p2)∧(p3)∧(p4)

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ φ = (¬p1 ∨ p2 ∨ p3) ∧ (¬p2 ∨ p3) ∧ (¬p3 ∨ p2) ∧ (¬p4 ∨ p2) ∧
(¬p4∨p3)∧(¬p1∨¬p4)∧(¬p3∨¬p4)∧(p1)∧(p2)∧(p3)∧(p4)

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ Formula is unsatisfiable
▶ We cannot install all packages
▶ How many packages can we install?

Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ Formula is unsatisfiable
▶ We cannot install all packages
▶ How many packages can we install?
▶ For example, we can install two packages. Can we do better?

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:
▶ What are the hard constraints?

▶

▶ What are the soft constraints?
▶

How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:
▶ What are the hard constraints?

▶ Dependencies and conflicts

▶ What are the soft constraints?
▶ Installation of packages

Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

H (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

S (Soft): p1 p2 p3 p4

▶ Dependencies and conflicts are encoded as hard clauses
▶ Installation of packages are encoded as soft clauses
▶ Goal: maximize the number of installed packages

Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

H (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

S (Soft): p1 p2 p3 p4

▶ Dependencies and conflicts are encoded as hard clauses
▶ Installation of packages are encoded as soft clauses
▶ Optimal solution (3 out 4 packages are installed)

Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

H (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

S (Soft): p1 p2 p3 p4

▶ Dependencies and conflicts are encoded as hard clauses
▶ Installation of packages are encoded as soft clauses
▶ Optimal solution (3 out 4 packages are installed)

Real-world applications use MaxSAT for this problem:
▶ Dependency management in Eclipse

[Berre and Rapicault, 2018]

Real-World Applications of
MaxSAT in Machine Learning

Explainable Machine Learning

Black Box (Classical) Model

Explainable Model

A sample is Iris Versicolor if
(sepal length > 6.3 OR sepal width > 3

OR petal width ≤ 1.5)
AND

(sepal width ≤ 3 OR petal length > 4
OR petal width > 1.5)

AND
(petal length ≤ 5)

Desirable Properties of ML models
▶ Accuracy (the decisions should be correct)

▶ Interpretability (users should be able to understand the
reasoning)

Explainable Machine Learning

Black Box (Classical) Model

Explainable Model

A sample is Iris Versicolor if
(sepal length > 6.3 OR sepal width > 3

OR petal width ≤ 1.5)
AND

(sepal width ≤ 3 OR petal length > 4
OR petal width > 1.5)

AND
(petal length ≤ 5)

Desirable Properties of ML models
▶ Accuracy (the decisions should be correct)
▶ Interpretability (users should be able to understand the

reasoning)

Explainable Machine Learning

Black Box (Classical) Model Explainable Model

A sample is Iris Versicolor if
(sepal length > 6.3 OR sepal width > 3

OR petal width ≤ 1.5)
AND

(sepal width ≤ 3 OR petal length > 4
OR petal width > 1.5)

AND
(petal length ≤ 5)

Desirable Properties of ML models
▶ Accuracy (the decisions should be correct)
▶ Interpretability (users should be able to understand the

reasoning)

Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:

▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!

Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:

▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!

Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!

Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation
▶ Achieves accuracy comparable to other state-of-the-art

methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!

Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation
▶ Achieves accuracy comparable to other state-of-the-art

methods (without sacrificing interpretability).
▶ We’d like to thank the authors for providing material!

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0A CNF-classifier

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0A CNF-classifier

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0A CNF-classifier

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:
(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0A CNF-classifier

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:
(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0

A CNF-classifier

The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0

A CNF-classifier

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1

R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1}

τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0

τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1}

τ2(R) = 1

Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1

Why Optimization?

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

R = (x2)

min
∑

C∈R |C|min
∑

C∈R |C|+ λ
∑

i ϵi

where ϵi = 1 iff di is considered noise
i.e. τ i(R) ̸= yi

Classifiers are not unique.

▶ Desirable properties:

▶ Explainability
▶ Accuracy

Why Optimization?

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1

R = (x2 ∨ x3) ∧ (¬x1)

R = (x2)

min
∑

C∈R |C|min
∑

C∈R |C|+ λ
∑

i ϵi

where ϵi = 1 iff di is considered noise
i.e. τ i(R) ̸= yi

Classifiers are not unique.
▶ Desirable properties:

▶ Explainability
▶ Accuracy

Why Optimization?

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1

R = (x2 ∨ x3) ∧ (¬x1)

R = (x2)

min
∑

C∈R |C|

min
∑

C∈R |C|+ λ
∑

i ϵi

where ϵi = 1 iff di is considered noise
i.e. τ i(R) ̸= yi

Classifiers are not unique.
▶ Desirable properties:

▶ Explainability

▶ Accuracy

Why Optimization?

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1

R = (x2 ∨ x3) ∧ (¬x1)

R = (x2)

min
∑

C∈R |C|

min
∑

C∈R |C|+ λ
∑

i ϵi

where ϵi = 1 iff di is considered noise
i.e. τ i(R) ̸= yi

Classifiers are not unique.
▶ Desirable properties:

▶ Explainability
▶ Accuracy

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):

bt
i , t = 1 . . .m, i = 1 . . . k τ(bt

i) = 1 if xt ∈ Ci ∈ R
ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k

τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n

τ(ηi) = 1 if di is noise

Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:

Capture the cost function: min
∑

C∈R |C|+ λ
∑

i ϵi
Considering (di, yi) as noise incurs a cost of λ:

(¬ηi), with weight λ
Adding any literal xt to Ci incurs a cost of 1:

(¬bt
i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Where τ i = {x1 = d1, . . . xm = dm}

Soft Clauses:

Capture the cost function: min
∑

C∈R |C|+ λ
∑

i ϵi
Considering (di, yi) as noise incurs a cost of λ:

(¬ηi), with weight λ
Adding any literal xt to Ci incurs a cost of 1:

(¬bt
i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:
Capture the cost function: min

∑
C∈R |C|+ λ

∑
i ϵi

Considering (di, yi) as noise incurs a cost of λ:
(¬ηi), with weight λ

Adding any literal xt to Ci incurs a cost of 1:
(¬bt

i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:
Capture the cost function: min

∑
C∈R |C|+ λ

∑
i ϵi

Considering (di, yi) as noise incurs a cost of λ:

(¬ηi), with weight λ
Adding any literal xt to Ci incurs a cost of 1:

(¬bt
i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:
Capture the cost function: min

∑
C∈R |C|+ λ

∑
i ϵi

Considering (di, yi) as noise incurs a cost of λ:
(¬ηi), with weight λ

Adding any literal xt to Ci incurs a cost of 1:
(¬bt

i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:
Capture the cost function: min

∑
C∈R |C|+ λ

∑
i ϵi

Considering (di, yi) as noise incurs a cost of λ:
(¬ηi), with weight λ

Adding any literal xt to Ci incurs a cost of 1:

(¬bt
i) with weight 1

Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:
Capture the cost function: min

∑
C∈R |C|+ λ

∑
i ϵi

Considering (di, yi) as noise incurs a cost of λ:
(¬ηi), with weight λ

Adding any literal xt to Ci incurs a cost of 1:
(¬bt

i) with weight 1

Example

Data:
d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1
k = 2, λ = 2

Rτ = (x2) ∧ (x2)

Hard Clauses
▶ ¬η1 → ¬(b1

1 ∨ b3
1) ∨ ¬(b1

2 ∨ b3
2)

▶ ¬η2 → (b2
1 ∨ b3

1) ∧ (b2
2 ∨ b3

2)

Soft clauses
▶ (¬b1

1), (¬b2
1), (¬b3

1), (¬b1
2), (¬b2

2), (¬b3
2) weight 1

▶ (¬η1), (¬η2) weight 2.

Example

Data:
d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1
k = 2, λ = 2

Rτ = (x2) ∧ (x2)

Hard Clauses
▶ ¬η1 → ¬(b1

1 ∨ b3
1) ∨ ¬(b1

2 ∨ b3
2)

▶ ¬η2 → (b2
1 ∨ b3

1) ∧ (b2
2 ∨ b3

2)

Soft clauses
▶ (¬b1

1), (¬b2
1), (¬b3

1), (¬b1
2), (¬b2

2), (¬b3
2) weight 1

▶ (¬η1), (¬η2) weight 2.

Example

Data:
d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1
k = 2, λ = 2

Rτ = (x2) ∧ (x2)

Hard Clauses
▶ ¬η1 → ¬(b1

1 ∨ b3
1) ∨ ¬(b1

2 ∨ b3
2)

▶ ¬η2 → (b2
1 ∨ b3

1) ∧ (b2
2 ∨ b3

2)

Soft clauses
▶ (¬b1

1), (¬b2
1), (¬b3

1), (¬b1
2), (¬b2

2), (¬b3
2) weight 1

▶ (¬η1), (¬η2) weight 2.

Example

Data:
d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1
k = 2, λ = 2

Rτ = (x2) ∧ (x2)

Hard Clauses
▶ ¬η1 → ¬(b1

1 ∨ b3
1) ∨ ¬(b1

2 ∨ b3
2)

▶ ¬η2 → (b2
1 ∨ b3

1) ∧ (b2
2 ∨ b3

2)

Soft clauses
▶ (¬b1

1), (¬b2
1), (¬b3

1), (¬b1
2), (¬b2

2), (¬b3
2) weight 1

▶ (¬η1), (¬η2) weight 2.

More on Modelling with
MaxSAT

Representing High-level Soft Constraints

Basic Idea
Finite-domain soft constraint C with associated weight WC .
Let CNF(C) =

∧m
i=1 Ci be a CNF encoding of C.

Softening CNF(C) as Weighted Partial MaxSAT:
▶ Hard clauses:

∧m
i=1(Ci ∨ a),

where a is a fresh Boolean variable
▶ Soft clause: (¬a) with weight WC .

Important for various applications of MaxSAT

Handling Non-Integer Weights

Problem
MaxSAT supports (by definition and input format) only integer
weights on soft clauses. The objective function of my problem has
real-valued weights.

Solution
Scale weight range to 64-bit representation range & truncate to
integers.
▶ Standard trick when applying MaxSAT solvers
▶ Solvers less and less volative in terms of large weights
▶ While some accuracy may be lost, similar issues are standardly

seen e.g. when applying mixed-linear integer programming

Tools for Modelling and Building Solvers
Preprocessing: simplifying encodings before solving
▶ MaxPre [Korhonen, Berg, Saikko, and Järvisalo, 2017]

▶ Coprocessor [Manthey, 2012]

Automated encoding of high-level constraints
▶ MaxPre: extends input language to cardinality constraints
▶ Room for improvement in terms of easy-to-use tools!

PySAT: Python library for prototyping solvers
▶ Offers easy interfacing with SAT solvers

[Ignatiev, Morgado, and Marques-Silva, 2018a]

▶ Cardinality constraint support built-in
▶ Efficient: one of the most recent efficient core-guided solvers,

RC2, is PySAT-based

Applying MaxSAT to New Domains

▶ How to model problem X as MaxSAT?
▶ Developing compact encodings
▶ Redundant constraints via insights into the problem domain
▶ Representation of weights
▶ …

▶ Understanding the interplay between encodings and solver
techniques
▶ Encodings: compactness vs. propagation
▶ Underlying core-structure of encodings
▶ The “best” solvers for current benchmark sets may not be best

for novel applications!
▶ Requires trial-and-error & in-depth understanding of solvers

and the problem domain

Summary

MaxSAT
▶ Low-level constraint language:

weighted Boolean combinations of binary variables
▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ MaxSAT solvers:

▶ build on top of highly efficient SAT solver technology
▶ various alternative approaches:

branch-and-bound, model-improving, core-guided, IHS, …
▶ standard WCNF input format
▶ yearly MaxSAT solver evaluations

Success of MaxSAT
▶ Attractive alternative to other constrained optimization

paradigms
▶ Number of applications increasing
▶ Solver technology improving rapidly

Topics Covered

▶ Basic concepts
▶ Survey of some of the currently most relevant solving

algorithms
▶ model-improving
▶ core-guided
▶ SAT-IP hybrids based on the implicit hitting set approach
▶ incomplete solving

▶ Modelling with MaxSAT
▶ ideas for how to encode different problems as MaxSAT
▶ understanding some of the benefits of using MaxSAT

Further Topics and Research Directions
Incomplete Solving
Quick recent progress suggests that further improvements are to be
expected

Preprocessing
How to simplify MaxSAT instances to make them easier for
solver(s)?
▶ Recent progress:

▶ Lifting SAT-based techniques
[Belov, Morgado, and Marques-Silva, 2013; Berg and Järvisalo, 2019]

▶ Native MaxSAT techniques
[Berg, Saikko, and Järvisalo, 2015b,a, 2016; Korhonen, Berg, Saikko, and

Järvisalo, 2017]
▶ Analysis [Berg and Järvisalo, 2016, 2019]

▶ Challenge: effective integration with MaxSAT algorithms
▶ Inprocessing MaxSAT solving?

(In analogy to SAT [Järvisalo, Heule, and Biere, 2012])

Further Topics and Research Directions
Parallel Solving
How to truly make use of massively parallel computing
infrastructures for MaxSAT?
▶ Obtaining linear speed-ups (or even more) turned out to be

highly non-trivial to obtain, similarly as in SAT solving
▶ Some progress, but much more unleashed potential

[Martins, Manquinho, and Lynce, 2011, 2012; van der Tak, Heule, and Biere,
2012; Terra-Neves, Lynce, and Manquinho, 2016]

Support for Incremental Computations
Solving several related instances without computing from scratch
▶ Solving huge MaxSAT instances
▶ Applying MaxSAT to solve beyond-NP optimization problems
▶ Applications benefiting from incremental computations
▶ Currently, few solvers offer (restricted) incremental APIs

[Saikko, Berg, and Järvisalo, 2016]

Further Reading and Links

Surveys
▶ “Maximum Satisfiability” by Bacchus, Järvisalo & Martins

▶ Chapter in forthcoming vol. 2 of Handbook of Satisfiability
▶ Preprint available, link on tutorial webpage

▶ Somewhat older surveys:
▶ Handbook chapter on MaxSAT: [Li and Manyà, 2009]
▶ Surveys on MaxSAT algorithms:

[Ansótegui, Bonet, and Levy, 2013a]
[Morgado, Heras, Liffiton, Planes, and Marques-Silva, 2013a]

MaxSAT Evaluations
https://maxsat-evaluations.github.io
Most recent report: [Bacchus, Järvisalo, and Martins, 2019]

https://maxsat-evaluations.github.io

Thank you for attending!

Bibliography I
Roberto Javier Asín Achá and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT and MaxSAT.

Annals of Operations Research, 218(1):71–91, 2014. doi: 10.1007/s10479-012-1081-x. URL
https://doi.org/10.1007/s10479-012-1081-x.

Mario Alviano, Carmine Dodaro, and Francesco Ricca. A MaxSAT algorithm using cardinality constraints of
bounded size. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
2677–2683. AAAI Press, 2015. URL http://ijcai.org/papers15/Abstracts/IJCAI15-379.html.

Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-based optimization in
clasp. In Agostino Dovier and Vítor Santos Costa, editors, Technical Communications of the 28th International
Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs,
pages 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT through satisfiability
testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th
International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of
Lecture Notes in Computer Science, pages 427–440. Springer, 2009.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. A new algorithm for weighted partial MaxSAT. In Maria Fox
and David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artificial Intelligence, 196:
77–105, 2013a. doi: 10.1016/j.artint.2013.01.002. URL
http://dx.doi.org/10.1016/j.artint.2013.01.002.

Carlos Ansótegui, Idelfonso Izquierdo, Felip Manyà, and José Torres-Jiménez. A Max-SAT-based approach to
constructing optimal covering arrays. In Karina Gibert, Vicent J. Botti, and Ramón Reig Bolaño, editors,
Artificial Intelligence Research and Development - Proceedings of the 16th International Conference of the
Catalan Association for Artificial Intelligence, Vic, Catalonia, Spain, October 23-25, 2013., volume 256 of
Frontiers in Artificial Intelligence and Applications, pages 51–59. IOS Press, 2013b.

Carlos Ansótegui, Frédéric Didier, and Joel Gabàs. Exploiting the structure of unsatisfiable cores in MaxSAT. In
Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 283–289. AAAI Press,
2015. ISBN 978-1-57735-738-4.

https://doi.org/10.1007/s10479-012-1081-x
http://ijcai.org/papers15/Abstracts/IJCAI15-379.html
http://dx.doi.org/10.1016/j.artint.2013.01.002

Bibliography II
Josep Argelich, Inês Lynce, and João Marques-Silva. On solving boolean multilevel optimization problems. In Craig

Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 393–398. AAAI Press, 2009.

Josep Argelich, Daniel Le Berre, Inês Lynce, João Marques-Silva, and Pascal Rapicault. Solving linux upgradeability
problems using boolean optimization. In Inês Lynce and Ralf Treinen, editors, Proceedings First International
Workshop on Logics for Component Configuration, LoCoCo 2010, Edinburgh, UK, 10th July 2010., volume 29
of EPTCS, pages 11–22, 2010.

Florent Avellaneda. UWrMaxSat - a new MiniSat+-based Solver in MaxSAT Evaluation 2020. In MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions, volume B-2020-2 of Department of Computer Science
Series of Publications B, pages 8–9. University of Helsinki, 2020.

Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In
J. Christopher Beck, editor, Principles and Practice of Constraint Programming - 23rd International
Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416
of Lecture Notes in Computer Science, pages 641–651. Springer, 2017. doi:
10.1007/978-3-319-66158-2_41. URL https://doi.org/10.1007/978-3-319-66158-2_41.

Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maxsat evaluation 2018: New developments and detailed
results. J. Satisf. Boolean Model. Comput., 11(1):99–131, 2019. doi: 10.3233/SAT190119. URL
https://doi.org/10.3233/SAT190119.

Amine Belabed, Esma Aïmeur, Mohammed Amine Chikh, and Hadjila Fethallah. A privacy-preserving approach for
composite web service selection. Transactions on Data Privacy, 10(2):83–115, 2017. URL
http://www.tdp.cat/issues16/abs.a253a16.php.

Anton Belov, António Morgado, and João Marques-Silva. SAT-based preprocessing for MaxSAT. In Kenneth L.
McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, volume 8312 of Lecture Notes in Computer Science, pages 96–111. Springer, 2013.

Jeremias Berg and Matti Järvisalo. Optimal correlation clustering via MaxSAT. In Wei Ding, Takashi Washio, Hui
Xiong, George Karypis, Bhavani M. Thuraisingham, Diane J. Cook, and Xindong Wu, editors, 13th IEEE
International Conference on Data Mining Workshops, ICDM Workshops, TX, USA, December 7-10, 2013,
pages 750–757. IEEE Computer Society, 2013.

https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.3233/SAT190119
http://www.tdp.cat/issues16/abs.a253a16.php

Bibliography III
Jeremias Berg and Matti Järvisalo. SAT-based approaches to treewidth computation: An evaluation. In 26th IEEE

International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, November 10-12,
2014, pages 328–335. IEEE Computer Society, 2014.

Jeremias Berg and Matti Järvisalo. Impact of SAT-based preprocessing on core-guided MaxSAT solving. In Michel
Rueher, editor, Principles and Practice of Constraint Programming - 22nd International Conference, CP 2016,
Toulouse, France, September 5-9, 2016, Proceedings, volume 9892 of Lecture Notes in Computer Science,
pages 66–85. Springer, 2016. doi: 10.1007/978-3-319-44953-1_5. URL
https://doi.org/10.1007/978-3-319-44953-1_5.

Jeremias Berg and Matti Järvisalo. Cost-optimal constrained correlation clustering via weighted partial maximum
satisfiability. Artificial Intelligence, 244:110–142, 2017. doi: 10.1016/j.artint.2015.07.001. URL
https://doi.org/10.1016/j.artint.2015.07.001.

Jeremias Berg and Matti Järvisalo. Unifying reasoning and core-guided search for maximum satisfiability. In
Francesco Calimeri, Nicola Leone, and Marco Manna, editors, Logics in Artificial Intelligence - 16th European
Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture Notes in
Computer Science, pages 287–303. Springer, 2019. doi: 10.1007/978-3-030-19570-0_19. URL
https://doi.org/10.1007/978-3-030-19570-0_19.

Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning optimal bounded treewidth Bayesian networks via
maximum satisfiability. In Jukka Corander and Samuel Kaski, editors, Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April
22-25, 2014, volume 33 of JMLR Workshop and Conference Proceedings, pages 86–95. JMLR.org, 2014.

Jeremias Berg, Paul Saikko, and Matti Järvisalo. Re-using auxiliary variables for MaxSAT preprocessing. In 27th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2015, Vietri sul Mare, Italy,
November 9-11, 2015, pages 813–820. IEEE Computer Society, 2015a.

Jeremias Berg, Paul Saikko, and Matti Järvisalo. Improving the effectiveness of SAT-based preprocessing for
MaxSAT. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
239–245. AAAI Press, 2015b. URL http://ijcai.org/papers15/Abstracts/IJCAI15-040.html.

https://doi.org/10.1007/978-3-319-44953-1_5
https://doi.org/10.1016/j.artint.2015.07.001
https://doi.org/10.1007/978-3-030-19570-0_19
http://ijcai.org/papers15/Abstracts/IJCAI15-040.html

Bibliography IV
Jeremias Berg, Paul Saikko, and Matti Järvisalo. Subsumed label elimination for maximum satisfiability. In Gal A.

Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum, Frank Dignum, and Frank van
Harmelen, editors, ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 September
2016, The Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016),
volume 285 of Frontiers in Artificial Intelligence and Applications, pages 630–638. IOS Press, 2016. doi:
10.3233/978-1-61499-672-9-630. URL https://doi.org/10.3233/978-1-61499-672-9-630.

Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete maxsat. In
Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019, Thessaloniki, Greece,
June 4-7, 2019, Proceedings, volume 11494 of Lecture Notes in Computer Science, pages 39–56. Springer,
2019. doi: 10.1007/978-3-030-19212-9_3. URL https://doi.org/10.1007/978-3-030-19212-9_3.

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set maxsat solving. In Luca
Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 277–294. Springer, 2020. doi: 10.1007/978-3-030-51825-7_20. URL
https://doi.org/10.1007/978-3-030-51825-7_20.

Daniel Le Berre and Pascal Rapicault. Boolean-based dependency management for the eclipse ecosystem. Int. J.
Artif. Intell. Tools, 27(1):1840003:1–1840003:23, 2018. doi: 10.1142/S0218213018400031. URL
https://doi.org/10.1142/S0218213018400031.

Miquel Bofill, Marc Garcia, Josep Suy, and Mateu Villaret. MaxSAT-based scheduling of B2B meetings. In Laurent
Michel, editor, Integration of AI and OR Techniques in Constraint Programming - 12th International
Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings, volume 9075 of Lecture Notes in
Computer Science, pages 65–73. Springer, 2015.

Kerstin Bunte, Matti Järvisalo, Jeremias Berg, Petri Myllymäki, Jaakko Peltonen, and Samuel Kaski. Optimal
neighborhood preserving visualization by maximum satisfiability. In Carla E. Brodley and Peter Stone, editors,
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,
Québec, Canada., pages 1694–1700. AAAI Press, 2014. URL
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8242.

https://doi.org/10.3233/978-1-61499-672-9-630
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1142/S0218213018400031
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8242

Bibliography V
Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial MaxSAT. Artificial

Intelligence, 240:1–18, 2016. doi: 10.1016/j.artint.2016.07.006. URL
https://doi.org/10.1016/j.artint.2016.07.006.

Yibin Chen, Sean Safarpour, Andreas G. Veneris, and João Marques-Silva. Spatial and temporal design debug using
partial MaxSAT. In Fabrizio Lombardi, Sanjukta Bhanja, Yehia Massoud, and R. Iris Bahar, editors,
Proceedings of the 19th ACM Great Lakes Symposium on VLSI 2009, Boston Area, MA, USA, May 10-12
2009, pages 345–350. ACM, 2009.

Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G. Veneris. Automated design debugging with
maximum satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 29
(11):1804–1817, 2010. doi: 10.1109/TCAD.2010.2061270. URL
http://dx.doi.org/10.1109/TCAD.2010.2061270.

Eldan Cohen, Guoyu Huang, and J. Christopher Beck. (I can get) satisfaction: Preference-based scheduling for
concert-goers at multi-venue music festivals. In Serge Gaspers and Toby Walsh, editors, Theory and
Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia,
August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages
147–163. Springer, 2017.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In
Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International
Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876 of Lecture Notes in
Computer Science, pages 225–239. Springer, 2011. ISBN 978-3-642-23785-0. doi:
10.1007/978-3-642-23786-7. URL http://dx.doi.org/10.1007/978-3-642-23786-7.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte,
editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala,
Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages
247–262. Springer, 2013a.

Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MaxSAT. In Matti Järvisalo and
Allen Van Gelder, editors, Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International
Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in Computer
Science, pages 166–181. Springer, 2013b.

https://doi.org/10.1016/j.artint.2016.07.006
http://dx.doi.org/10.1109/TCAD.2010.2061270
http://dx.doi.org/10.1007/978-3-642-23786-7

Bibliography VI

Ricardo Tavares de Oliveira and Fabiano Silva. On a relative MaxSAT encoding for the steiner tree problem in
graphs. In Obdulia Pichardo-Lagunas, Oscar Herrera-Alcántara, and Gustavo Arroyo-Figueroa, editors,
Advances in Artificial Intelligence and Its Applications - 14th Mexican International Conference on Artificial
Intelligence, MICAI 2015, Cuernavaca, Morelos, Mexico, October 25-31, 2015. Proceedings, Part II, volume
9414 of Lecture Notes in Computer Science, pages 422–434. Springer, 2015.

Emir Demirovic and Nysret Musliu. MaxSAT-based large neighborhood search for high school timetabling.
Computers & Operations Research, 78:172–180, 2017. doi: 10.1016/j.cor.2016.08.004. URL
https://doi.org/10.1016/j.cor.2016.08.004.

Emir Demirovic and Peter J. Stuckey. Techniques inspired by local search for incomplete maxsat and the linear
algorithm: Varying resolution and solution-guided search. In Thomas Schiex and Simon de Givry, editors,
Principles and Practice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT,
USA, September 30 - October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science,
pages 177–194. Springer, 2019. doi: 10.1007/978-3-030-30048-7_11. URL
https://doi.org/10.1007/978-3-030-30048-7_11.

Emir Demirović, Nysret Musliu, and Felix Winter. Modeling and solving staff scheduling with partial weighted
MaxSAT. Annals of Operations Research, 2017.

Rayna Dimitrova, Mahsa Ghasemi, and Ufuk Topcu. Maximum realizability for linear temporal logic specifications.
In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology for Verification and Analysis - 16th
International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings, volume 11138
of Lecture Notes in Computer Science, pages 458–475. Springer, 2018. doi:
10.1007/978-3-030-01090-4_27. URL https://doi.org/10.1007/978-3-030-01090-4_27.

Zhiwen Fang, Chu-Min Li, Kan Qiao, Xu Feng, and Ke Xu. Solving maximum weight clique using maximum
satisfiability reasoning. In Torsten Schaub, Gerhard Friedrich, and Barry O’Sullivan, editors, ECAI 2014 - 21st
European Conference on Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence
and Applications, pages 303–308. IOS Press, 2014. doi: 10.3233/978-1-61499-419-0-303. URL
http://dx.doi.org/10.3233/978-1-61499-419-0-303.

https://doi.org/10.1016/j.cor.2016.08.004
https://doi.org/10.1007/978-3-030-30048-7_11
https://doi.org/10.1007/978-3-030-01090-4_27
http://dx.doi.org/10.3233/978-1-61499-419-0-303

Bibliography VII
Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. Automated synthesis of semantic malware

signatures using maximum satisfiability. In 24th Annual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26 - March 1, 2017. The Internet Society, 2017. URL
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/.

Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere and Carla P. Gomes,
editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle,
WA, USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science, pages
252–265. Springer, 2006. ISBN 3-540-37206-7.

Bishwamittra Ghosh and Kuldeep S. Meel. IMLI: an incremental framework for maxsat-based learning of
interpretable classification rules. In Vincent Conitzer, Gillian K. Hadfield, and Shannon Vallor, editors,
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2019, Honolulu, HI, USA,
January 27-28, 2019, pages 203–210. ACM, 2019. doi: 10.1145/3306618.3314283. URL
https://doi.org/10.1145/3306618.3314283.

Ana Graça, João Marques-Silva, and Inês Lynce. Haplotype inference using propositional satisfiability. In Renato
Bruni, editor, Mathematical Approaches to Polymer Sequence Analysis and Related Problems, pages 127–147.
Springer, 2011a.

Ana Graça, João Marques-Silva, Inês Lynce, and Arlindo L. Oliveira. Haplotype inference with pseudo-boolean
optimization. Annals of Operations Research, 184(1):137–162, 2011b.

João Guerra and Inês Lynce. Reasoning over biological networks using maximum satisfiability. In Michela Milano,
editor, Principles and Practice of Constraint Programming - 18th International Conference, CP 2012, Québec
City, QC, Canada, October 8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages
941–956. Springer, 2012.

Federico Heras, António Morgado, and João Marques-Silva. Core-guided binary search algorithms for maximum
satisfiability. In Wolfram Burgard and Dan Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

Wenxuan Huang, Daniil A. Kitchaev, Stephen T. Dacek, Ziqin Rong, Alexander Urban, Shan Cao, Chuan Luo, and
Gerbrand Ceder. Finding and proving the exact ground state of a generalized ising model by convex
optimization and MAX-SAT. Physical Review B, 94:134424, 2016. doi: 10.1103/PhysRevB.94.134424.
URL https://link.aps.org/doi/10.1103/PhysRevB.94.134424.

https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/automated-synthesis-semantic-malware-signatures-using-maximum-satisfiability/
https://doi.org/10.1145/3306618.3314283
https://link.aps.org/doi/10.1103/PhysRevB.94.134424

Bibliography VIII
Antti Hyttinen, Sergey M. Plis, Matti Järvisalo, Frederick Eberhardt, and David Danks. A constraint optimization

approach to causal discovery from subsampled time series data. International Journal of Approximate
Reasoning, 90:208–225, 2017a. doi: 10.1016/j.ijar.2017.07.009. URL
https://doi.org/10.1016/j.ijar.2017.07.009.

Antti Hyttinen, Paul Saikko, and Matti Järvisalo. A core-guided approach to learning optimal causal graphs. In
Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 645–651. ijcai.org, 2017b. doi:
10.24963/ijcai.2017/90. URL https://doi.org/10.24963/ijcai.2017/90.

Alexey Ignatiev, Mikolás Janota, and João Marques-Silva. Towards efficient optimization in package management
systems. In Pankaj Jalote, Lionel C. Briand, and André van der Hoek, editors, 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 745–755. ACM, 2014.

Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A python toolkit for prototyping with SAT
oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability
Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 428–437. Springer, 2018a. doi: 10.1007/978-3-319-94144-8_26. URL
https://doi.org/10.1007/978-3-319-94144-8_26.

Alexey Ignatiev, Filipe Pereira, Nina Narodytska, and João Marques-Silva. A SAT-based approach to learn
explainable decision sets. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes in Computer Science,
pages 627–645. Springer, 2018b. doi: 10.1007/978-3-319-94205-6_41. URL
https://doi.org/10.1007/978-3-319-94205-6_41.

Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. Abduction-based explanations for machine learning
models. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, pages 1511–1519. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33011511. URL
https://doi.org/10.1609/aaai.v33i01.33011511.

https://doi.org/10.1016/j.ijar.2017.07.009
https://doi.org/10.24963/ijcai.2017/90
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94205-6_41
https://doi.org/10.1609/aaai.v33i01.33011511

Bibliography IX
Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Bernhard Gramlich, Dale Miller, and Uli

Sattler, editors, Automated Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK,
June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages 355–370. Springer,
2012. doi: 10.1007/978-3-642-31365-3_28. URL https://doi.org/10.1007/978-3-642-31365-3_28.

M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum satisfiability. In Mary W. Hall and
David A. Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 437–446. ACM, 2011.

Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao. Approximation strategies for incomplete MaxSAT.
In John N. Hooker, editor, Principles and Practice of Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science,
pages 219–228. Springer, 2018. doi: 10.1007/978-3-319-98334-9_15. URL
https://doi.org/10.1007/978-3-319-98334-9_15.

Tuukka Korhonen and Matti Järvisalo. Finding most compatible phylogenetic trees over multi-state characters. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 1544–1551.
AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/view/5514.

Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo. MaxPre: An extended MaxSAT preprocessor.
In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing - SAT 2017 - 20th
International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume
10491 of Lecture Notes in Computer Science, pages 449–456. Springer, 2017. doi:
10.1007/978-3-319-66263-3_28. URL https://doi.org/10.1007/978-3-319-66263-3_28.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A partial Max-SAT solver.
Journal of Satisfiability, Boolean Modeling and Computation, 8(1/2):95–100, 2012.

Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Handbook of Satisfiability, pages 613–631.
2009. doi: 10.3233/978-1-58603-929-5-613. URL
http://dx.doi.org/10.3233/978-1-58603-929-5-613.

Chu Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique
problem. In Maria Fox and David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, 2010.

https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-98334-9_15
https://aaai.org/ojs/index.php/AAAI/article/view/5514
https://doi.org/10.1007/978-3-319-66263-3_28
http://dx.doi.org/10.3233/978-1-58603-929-5-613

Bibliography X
Chu-Min Li, Hua Jiang, and Ruchu Xu. Incremental MaxSAT reasoning to reduce branches in a branch-and-bound

algorithm for MaxClique. In Clarisse Dhaenens, Laetitia Jourdan, and Marie-Eléonore Marmion, editors,
Learning and Intelligent Optimization - 9th International Conference, LION 9, Lille, France, January 12-15,
2015. Revised Selected Papers, volume 8994 of Lecture Notes in Computer Science, pages 268–274. Springer,
2015.

Xiaojuan Liao, Hui Zhang, and Miyuki Koshimura. Reconstructing AES key schedule images with SAT and
MaxSAT. IEICE Transactions, 99-D(1):141–150, 2016. doi: 10.1587/transinf.2015EDP7223. URL
https://doi.org/10.1587/transinf.2015EDP7223.

Pey-Chang Kent Lin and Sunil P Khatri. Application of Max-SAT-based ATPG to optimal cancer therapy design.
BMC Genomics, 13, 2012.

Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: an efficient local search algorithm for weighted
partial maximum satisfiability. Artificial Intelligence, 243:26–44, 2017. doi: 10.1016/j.artint.2016.11.001.
URL https://doi.org/10.1016/j.artint.2016.11.001.

Inês Lynce and João Marques-Silva. Restoring CSP satisfiability with MaxSAT. Fundamenta Informatica, 107(2-3):
249–266, 2011. doi: 10.3233/FI-2011-402. URL http://dx.doi.org/10.3233/FI-2011-402.

Dmitry Maliotov and Kuldeep S. Meel. MLIC: A MaxSAT-based framework for learning interpretable classification
rules. In John N. Hooker, editor, Principles and Practice of Constraint Programming - 24th International
Conference, CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in
Computer Science, pages 312–327. Springer, 2018.

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. A user-guided approach to program analysis. In
Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015,
pages 462–473. ACM, 2015.

Vasco M. Manquinho, João Marques-Silva, and Jordi Planes. Algorithms for weighted boolean optimization. In
Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in
Computer Science, pages 495–508. Springer, 2009. doi: 10.1007/978-3-642-02777-2_45. URL
http://dx.doi.org/10.1007/978-3-642-02777-2_45.

https://doi.org/10.1587/transinf.2015EDP7223
https://doi.org/10.1016/j.artint.2016.11.001
http://dx.doi.org/10.3233/FI-2011-402
http://dx.doi.org/10.1007/978-3-642-02777-2_45

Bibliography XI
Norbert Manthey. Coprocessor 2.0 - A flexible CNF simplifier - (tool presentation). In Alessandro Cimatti and

Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International
Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer Science,
pages 436–441. Springer, 2012. doi: 10.1007/978-3-642-31612-8_34. URL
https://doi.org/10.1007/978-3-642-31612-8_34.

Felip Manyà, Santiago Negrete, Carme Roig, and Joan Ramon Soler. A MaxSAT-based approach to the team
composition problem in a classroom. In Gita Sukthankar and Juan A. Rodríguez-Aguilar, editors, Autonomous
Agents and Multiagent Systems - AAMAS 2017 Workshops, Visionary Papers, São Paulo, Brazil, May 8-12,
2017, Revised Selected Papers, volume 10643 of Lecture Notes in Computer Science, pages 164–173. Springer,
2017.

Tiepelt Marcel Kevin and Singh Tilak Raj. Finding pre-production vehicle configurations using a MaxSAT
framework. In Proceedings of the 18th International Configuration Workshop, pages 117–122. École des Mines
d’Albi-Carmaux, 2016.

João Marques-Silva and Jordi Planes. On using unsatisfiability for solving maximum satisfiability. CoRR,
abs/0712.1097, 2007. URL http://arxiv.org/abs/0712.1097.

João Marques-Silva, Mikolás Janota, Alexey Ignatiev, and António Morgado. Efficient model based diagnosis with
maximum satisfiability. In Qiang Yang and Michael Wooldridge, editors, Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 1966–1972. AAAI Press, 2015.

Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Exploiting cardinality encodings in parallel maximum
satisfiability. In IEEE 23rd International Conference on Tools with Artificial Intelligence, ICTAI 2011, Boca
Raton, FL, USA, November 7-9, 2011, pages 313–320. IEEE Computer Society, 2011. ISBN
978-1-4577-2068-0. URL http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6101101.

Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Parallel search for maximum satisfiability. AI
Communications, 25(2):75–95, 2012. doi: 10.3233/AIC-2012-0517. URL
http://dx.doi.org/10.3233/AIC-2012-0517.

Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce. Incremental cardinality constraints for
MaxSAT. In Barry O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in
Computer Science, pages 531–548. Springer, 2014a.

https://doi.org/10.1007/978-3-642-31612-8_34
http://arxiv.org/abs/0712.1097
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6101101
http://dx.doi.org/10.3233/AIC-2012-0517

Bibliography XII
Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Carsten Sinz

and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International
Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer, 2014b.

António Morgado and João Marques-Silva. Combinatorial optimization solutions for the maximum quartet
consistency problem. Fundamenta Informatica, 102(3-4):363–389, 2010. doi: 10.3233/FI-2010-311. URL
http://dx.doi.org/10.3233/FI-2010-311.

António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva. Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints, 18(4):478–534, 2013a. doi:
10.1007/s10601-013-9146-2. URL http://dx.doi.org/10.1007/s10601-013-9146-2.

António Morgado, Mark H. Liffiton, and João Marques-Silva. MaxSAT-based MCS enumeration. In Armin Biere,
Amir Nahir, and Tanja E. J. Vos, editors, Hardware and Software: Verification and Testing - 8th International
Haifa Verification Conference, HVC 2012, Haifa, Israel, November 6-8, 2012. Revised Selected Papers, volume
7857 of Lecture Notes in Computer Science, pages 86–101. Springer, 2013b.

António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft cardinality
constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in
Computer Science, pages 564–573. Springer, 2014. ISBN 978-3-319-10427-0. doi:
10.1007/978-3-319-10428-7. URL http://dx.doi.org/10.1007/978-3-319-10428-7.

Christian J. Muise, J. Christopher Beck, and Sheila A. McIlraith. Optimal partial-order plan relaxation via
MaxSAT. Journal of Artificial Intelligence Research, 57:113–149, 2016. doi: 10.1613/jair.5128. URL
https://doi.org/10.1613/jair.5128.

Alexander Nadel. Solving MaxSAT with bit-vector optimization. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 54–72. Springer, 2018.

Alexander Nadel. Anytime weighted maxsat with improved polarity selection and bit-vector optimization. In
Clark W. Barrett and Jin Yang, editors, 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San
Jose, CA, USA, October 22-25, 2019, pages 193–202. IEEE, 2019. doi:
10.23919/FMCAD.2019.8894273. URL https://doi.org/10.23919/FMCAD.2019.8894273.

http://dx.doi.org/10.3233/FI-2010-311
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1007/978-3-319-10428-7
https://doi.org/10.1613/jair.5128
https://doi.org/10.23919/FMCAD.2019.8894273

Bibliography XIII
Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT resolution. In Carla E.

Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence,
July 27 -31, 2014, Québec City, Québec, Canada., pages 2717–2723. AAAI Press, 2014. ISBN
978-1-57735-661-5. URL http://www.aaai.org/Library/AAAI/aaai14contents.php.

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby Walsh. Verifying
properties of binarized deep neural networks. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 6615–6624. AAAI
Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898.

Nina Narodytska, Aditya A. Shrotri, Kuldeep S. Meel, Alexey Ignatiev, and João Marques-Silva. Assessing heuristic
machine learning explanations with model counting. In Mikolás Janota and Inês Lynce, editors, Theory and
Applications of Satisfiability Testing - SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal,
July 9-12, 2019, Proceedings, volume 11628 of Lecture Notes in Computer Science, pages 267–278. Springer,
2019. doi: 10.1007/978-3-030-24258-9_19. URL https://doi.org/10.1007/978-3-030-24258-9_19.

Miguel Neves, Ruben Martins, Mikolás Janota, Inês Lynce, and Vasco M. Manquinho. Exploiting resolution-based
representations for MaxSAT solving. In Marijn Heule and Sean Weaver, editors, Theory and Applications of
Satisfiability Testing - SAT 2015 - 18th International Conference, Austin, TX, USA, September 24-27, 2015,
Proceedings, volume 9340 of Lecture Notes in Computer Science, pages 272–286. Springer, 2015. ISBN
978-3-319-24317-7. doi: 10.1007/978-3-319-24318-4. URL
http://dx.doi.org/10.1007/978-3-319-24318-4.

Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo. Synthesizing argumentation frameworks from
examples. In Gal A. Kaminka, Maria Fox, Paolo Bouquet, Eyke Hüllermeier, Virginia Dignum, Frank Dignum,
and Frank van Harmelen, editors, ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29
August-2 September 2016, The Hague, The Netherlands - Including Prestigious Applications of Artificial
Intelligence (PAIS 2016), volume 285 of Frontiers in Artificial Intelligence and Applications, pages 551–559.
IOS Press, 2016a. doi: 10.3233/978-1-61499-672-9-551. URL
https://doi.org/10.3233/978-1-61499-672-9-551.

http://www.aaai.org/Library/AAAI/aaai14contents.php
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898
https://doi.org/10.1007/978-3-030-24258-9_19
http://dx.doi.org/10.1007/978-3-319-24318-4
https://doi.org/10.3233/978-1-61499-672-9-551

Bibliography XIV
Andreas Niskanen, Johannes Peter Wallner, and Matti Järvisalo. Optimal status enforcement in abstract

argumentation. In Subbarao Kambhampati, editor, Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 1216–1222.
IJCAI/AAAI Press, 2016b. URL http://www.ijcai.org/Abstract/16/176.

James D. Park. Using weighted MAX-SAT engines to solve MPE. In Rina Dechter and Richard S. Sutton, editors,
Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on
Innovative Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada., pages
682–687. AAAI Press / The MIT Press, 2002.

Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog encoding for solving weighted
MaxSAT. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability
Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 37–53. Springer, 2018.

Marek Piotrow. UWrMaxSat - a new MiniSat+-based Solver in MaxSAT Evaluation 2019. In MaxSAT Evaluation
2019: Solver and Benchmark Descriptions, volume B-2019-2 of Department of Computer Science Series of
Publications B, page 11. University of Helsinki, 2019.

Sean Safarpour, Hratch Mangassarian, Andreas G. Veneris, Mark H. Liffiton, and Karem A. Sakallah. Improved
design debugging using maximum satisfiability. In Formal Methods in Computer-Aided Design, 7th
International Conference, FMCAD 2007, Austin, Texas, USA, November 11-14, 2007, Proceedings, pages
13–19. IEEE Computer Society, 2007. doi: 10.1109/FAMCAD.2007.26. URL
https://doi.org/10.1109/FAMCAD.2007.26.

Paul Saikko, Brandon Malone, and Matti Järvisalo. MaxSAT-based cutting planes for learning graphical models. In
Laurent Michel, editor, Integration of AI and OR Techniques in Constraint Programming - 12th International
Conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, Proceedings, volume 9075 of Lecture Notes in
Computer Science, pages 347–356. Springer, 2015.

Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT solver. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 539–546. Springer, 2016.

http://www.ijcai.org/Abstract/16/176
https://doi.org/10.1109/FAMCAD.2007.26

Bibliography XV
Ahmad Shabani and Bijan Alizadeh. PMTP: A MAX-SAT based approach to detect hardware trojan using

propagation of maximum transition probability. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018. doi: 10.1109/TCAD.2018.2889663.

Xujie Si, Xin Zhang, Radu Grigore, and Mayur Naik. Maximum satisfiability in software analysis: Applications and
techniques. In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10427 of Lecture
Notes in Computer Science, pages 68–94. Springer, 2017.

Miguel Terra-Neves, Inês Lynce, and Vasco M. Manquinho. Non-portfolio approaches for distributed maximum
satisfiability. In 28th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2016, San Jose,
CA, USA, November 6-8, 2016, pages 436–443. IEEE Computer Society, 2016. doi:
10.1109/ICTAI.2016.0073. URL https://doi.org/10.1109/ICTAI.2016.0073.

Peter van der Tak, Marijn Heule, and Armin Biere. Concurrent cube-and-conquer - (poster presentation). In
Alessandro Cimatti and Roberto Sebastiani, editors, Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture
Notes in Computer Science, pages 475–476. Springer, 2012.

Abderrahim Ait Wakrime, Said Jabbour, and Nabil Hameurlain. A MaxSAT based approach for QoS cloud services.
International Journal of Parallel, Emergent and Distributed Systems, 2018.

Johannes Peter Wallner, Andreas Niskanen, and Matti Järvisalo. Complexity results and algorithms for extension
enforcement in abstract argumentation. Journal of Artificial Intelligence Research, 60:1–40, 2017. doi:
10.1613/jair.5415. URL https://doi.org/10.1613/jair.5415.

Guneshi T. Wickramaarachchi, Wahbeh H. Qardaji, and Ninghui Li. An efficient framework for user authorization
queries in RBAC systems. In Barbara Carminati and James Joshi, editors, 14th ACM Symposium on Access
Control Models and Technologies, SACMAT 2009, Stresa, Italy, June 3-5, 2009, Proceedings, pages 23–32.
ACM, 2009. doi: 10.1145/1542207.1542213. URL https://doi.org/10.1145/1542207.1542213.

Hui Xu, R. A. Rutenbar, and K. Sakallah. sub-SAT: a formulation for relaxed Boolean satisfiability with
applications in routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22
(6):814–820, 2003.

https://doi.org/10.1109/ICTAI.2016.0073
https://doi.org/10.1613/jair.5415
https://doi.org/10.1145/1542207.1542213

Bibliography XVI

Lei Zhang and Fahiem Bacchus. MAXSAT heuristics for cost optimal planning. In Jörg Hoffmann and Bart
Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press, 2012.

Xin Zhang, Ravi Mangal, Aditya V. Nori, and Mayur Naik. Query-guided maximum satisfiability. In Rastislav Bodík
and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
109–122. ACM, 2016. doi: 10.1145/2837614.2837658. URL
https://doi.org/10.1145/2837614.2837658.

Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik. Post-silicon fault localisation using maximum
satisfiability and backbones. In Per Bjesse and Anna Slobodová, editors, International Conference on Formal
Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, pages
63–66. FMCAD Inc., 2011.

https://doi.org/10.1145/2837614.2837658

	Motivation and Basic Concepts
	Exact Optimization
	Benefits of MaxSAT
	MaxSAT: Basic Definitions
	MaxSAT Solvers: Input Format, Evaluations, and Availability
	SAT-IP Hybrid Algorithms for MaxSAT

	References

