
Advances in Maximum Satisfiability

Jeremias Berg1 Matti Järvisalo1 Ruben Martins2

1University of Helsinki
Finland

2Carnegie Mellon University
USA

September 4, 2020 ECAI’20 Online



What This Tutorial is About

Maximum Satisfiability—MaxSAT
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)

solving
▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:

especially suited for inherently “Boolean” optimization
problems



Tutorial Outline

Three parts:

1. Motivation and basic concepts

2. Practical algorithms for MaxSAT

3. Applications and encodings



Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions
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SAT Solvers

From 100 variables, 200 constraints (early 90s)
up to >10,000,000 vars. and >50,000,000 clauses. in 20 years.
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Core NP search procedures for solving various types of
computational problems
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Core NP search procedures for solving various types of
computational problems



Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability
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Importance of Exact Optimization
Giving Up?
“The problem is NP-hard, so let’s develop
heuristics / approximation algorithms.”

No!
Benefits of provably optimal solutions:
▶ Resource savings

▶ Money
▶ Human resources
▶ Time

▶ Accuracy
▶ Better approximations

▶ by optimally solving simplified problem
representations

$$$

vs

Key Challenge: Scalability
Exactly solving instances of NP-hard optimization problems
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Constrained Optimization
Declarative approaches to exact optimization

Model + Solve
1. Modeling:

represent the problem declarative in a constraint language
so that optimal solutions to the constraint model corresponds
to optimal solutions of your problem

2. Solving:
use an generic, exact solver for the constraint language
to obtain, for any instance of your problem, an optimal
solution to the instance

Important aspects
▶ Which constraint language to choose — application-specific
▶ How to model the problem compactly & “well” (for the solver)
▶ Which constraint optimization solver to choose
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Constrained Optimization Paradigms
Mixed Integer-Linear Programming MIP, ILP
▶ Constraint language:

Conjunctions of linear inequalities
∑k

i=1 cixi
▶ Algorithms: e.g. Branch-and-cut w/Simplex

Finite-domain Constraint Optimization COP
▶ Constraint language:

Conjunctions of high-level (global) finite-domain constraints
▶ Algorithms:

Depth-first backtracking search, specialized filtering
algorithms

Maximum satisfiability MaxSAT
▶ Constraint language:

weighted Boolean combinations of binary variables
▶ Algorithms: building on state-of-the-art CDCL SAT solvers

▶ Learning from conflicts, conflict-driven search
▶ Incremental API, providing explanations for unsatisfiability



MaxSAT Applications

Drastically increasing number of successful applications
▶ Planning, Scheduling, and Configuration
▶ Data Analysis and Machine Learning
▶ Knowledge Representation and Reasoning
▶ Combinatorial Optimization
▶ Verification and Security
▶ Bioinformatics
▶ …

▶ Tens of new problem domains in MaxSAT Evaluations



MaxSAT Applications

Planning, Scheduling, and Configuration
Cost-optimal planning

[Zhang and Bacchus, 2012; Muise, Beck, and McIlraith, 2016]
robot motion planning [Dimitrova, Ghasemi, and Topcu, 2018]
course timetabling

[Demirovic and Musliu, 2017; Manyà, Negrete, Roig, and Soler, 2017; Achá and
Nieuwenhuis, 2014]
staff scheduling

[Demirović, Musliu, and Winter, 2017; Bofill, Garcia, Suy, and Villaret, 2015; Cohen,
Huang, and Beck, 2017]
vehicle configuration [Marcel Kevin and Tilak Raj, 2016]
package upgradeability
[Argelich, Lynce, and Marques-Silva, 2009; Argelich, Berre, Lynce, Marques-Silva, and
Rapicault, 2010; Ignatiev, Janota, and Marques-Silva, 2014]
…



MaxSAT Applications

Data Analysis and Machine Learning
MPE [Park, 2002]
structure learning

[Berg, Järvisalo, and Malone, 2014; Saikko, Malone, and Järvisalo, 2015]
causal discovery [Hyttinen, Saikko, and Järvisalo, 2017b]
causal structure estimation from time series data

[Hyttinen, Plis, Järvisalo, Eberhardt, and Danks, 2017a]
learning explainable decision sets

[Ignatiev, Pereira, Narodytska, and Marques-Silva, 2018b]
interpretable classification rules [Maliotov and Meel, 2018]
constrained correlation clustering [Berg and Järvisalo, 2013, 2017]
neighborhood-preserving visualization

[Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
…



MaxSAT Applications

Further AI Applications
dynamics of argumentation

[Wallner, Niskanen, and Järvisalo, 2017; Niskanen, Wallner, and Järvisalo, 2016b,a]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
inconsistency analysis

[Lynce and Marques-Silva, 2011; Morgado, Liffiton, and Marques-Silva, 2013b]
…

Combinatorial Optimization
Max-Clique

[Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
Steiner tree [de Oliveira and Silva, 2015]
tree-width [Berg and Järvisalo, 2014]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
…



MaxSAT Applications
Verification and Security
Debugging [Safarpour, Mangassarian, Veneris, Liffiton, and Sakallah, 2007; Chen,
Safarpour, Veneris, and Marques-Silva, 2009; Chen, Safarpour, Marques-Silva, and
Veneris, 2010; Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b; Xu,
Rutenbar, and Sakallah, 2003]
user authorization [Wickramaarachchi, Qardaji, and Li, 2009]
reconstructing AES key schedule images

[Liao, Zhang, and Koshimura, 2016]
detecting hardware Trojans [Shabani and Alizadeh, 2018]
malware detection [Feng, Bastani, Martins, Dillig, and Anand, 2017]
QoS [Wakrime, Jabbour, and Hameurlain, 2018; Belabed, Aïmeur, Chikh, and
Fethallah, 2017]
program analysis

[Mangal, Zhang, Nori, and Naik, 2015; Si, Zhang, Grigore, and Naik, 2017; Zhang,
Mangal, Nori, and Naik, 2016]
fault localization

[Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
…



MaxSAT Applications

Bioinformatics
Haplotype inference

[Graça, Marques-Silva, and Lynce, 2011a; Graça, Marques-Silva, Lynce, and Oliveira,
2011b]
generalized Ising models

[Huang, Kitchaev, Dacek, Rong, Urban, Cao, Luo, and Ceder, 2016]
bionetworks [Guerra and Lynce, 2012]
cancer therapy design [Lin and Khatri, 2012]
maximum compatibility in phylogenetics [Korhonen and Järvisalo, 2020]
…



MaxSAT Applications

Bioinformatics
Haplotype inference

[Graça, Marques-Silva, and Lynce, 2011a; Graça, Marques-Silva, Lynce, and Oliveira,
2011b]
generalized Ising models

[Huang, Kitchaev, Dacek, Rong, Urban, Cao, Luo, and Ceder, 2016]
bionetworks [Guerra and Lynce, 2012]
cancer therapy design [Lin and Khatri, 2012]
maximum compatibility in phylogenetics [Korhonen and Järvisalo, 2020]
…
Central to the increasing success:
Advances in MaxSAT solver technology



Benefits of MaxSAT
Provably optimal solutions

Example: Correlation clustering by MaxSAT
[Berg and Järvisalo, 2017]
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▶ Improved solution costs over approximative algorithms
▶ Good performance even on sparse data (missing values)



Benefits of MaxSAT
Surpassing the efficiency of specialized algorithms

Example:
Learning optimal bounded-treewidth Bayesian networks

[Berg, Järvisalo, and Malone, 2014]

MaxSAT vs Dynamic Programming and MIP
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Basic Concepts



MaxSAT: Basic Definitions

▶ Simple constraint language:
conjunctive normal form (CNF) propositional formulas
▶ More high-level constraints encoded as sets of clauses

Less restrictive than appears—more on this later!
▶ Literal: a boolean variable x or ¬x.
▶ Clause C: a disjunction (∨) of literals. e.g (x ∨ y ∨ ¬z)
▶ Truth assignment τ : a function from Boolean variables to

{0, 1}.
▶ Satisfaction:

τ(C) = 1 if
τ(x) = 1 for some literal x ∈ C, or
τ(x) = 0 for some literal ¬x ∈ C.

At least one literal of C is made true by τ .



MaxSAT: Basic Definitions

MaxSAT
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modeling practical problems.



Central Generalizations of MaxSAT

Weighted MaxSAT
▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied

clauses: τ s.t.
∑
C∈F

wcτ(C) is maximized.

Partial MaxSAT
▶ Some clauses are deemed hard—infinite weights

▶ Any solution has to satisfy the hard clauses
⇝ Existence of solutions not guaranteed

▶ Clauses with finite weight are soft

Weighted Partial MaxSAT
Hard clauses (partial) + weights on soft clauses (weighted)



MaxSAT: Example

Shortest Path
Find shortest path in a grid with horizontal/vertical moves.
Travel from S to G.
Cannot enter blocked squares.

S

G

a

c
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b g u
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rle

j k

n o p q

m



MaxSAT: Example

▶ Note: Best solved with state-space search
▶ Used here to illustrate MaxSAT encodings

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”
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MaxSAT: Example

▶ The previous clauses minimize the number of visited squares.
▶ …however, their MaxSAT solution will only visit S and G!
▶ Need to force the existence of a path between S and G by

additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S

G
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MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.

▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a
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d
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MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
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disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m



MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
▶ For G: k + q + r = 1
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MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints

S
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MaxSAT: Example

S

G

a

c

h i

d

b g u
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rle

j k
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m

Properties of the encoding
▶ Every solution to the hard clauses is a

path from S to G that does not pass a
blocked square.

▶ Such a path will falsify one negative soft
clause for every square it passes through.
▶ orange path: assign 14 variables in

{S, a, c, h, . . . , t, r,G} to true
▶ MaxSAT solutions:

paths that pas through a minimum
number of squares (i.e., is shortest).
▶ green path: assign 8 variables in

{S, b, g, f, . . . , k,G} to true



MaxSAT: Complexity
Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ The class of binary relations f(x, y) where given x we can

compute y in polynomial time with access to an NP oracle
▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).
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▶ The class of binary relations f(x, y) where given x we can

compute y in polynomial time with access to an NP oracle
▶ Polynomial number of oracle calls
▶ Other FPNP–complete problems include TSP

▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT is hard to approximate APX–complete
APX: class of NP optimization problems that
▶ admit a constant-factor approximation algorithm, but
▶ have no poly-time approximation scheme (unless NP=P).



Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution, or
UNSATISFIABLE
▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses



Push-Button Solver Technology

Example: $ openwbo mancoosi-test-i2000d0u98-26.wcnf

c Open-WBO: a Modular MaxSAT Solver
c Version: 1.3.1 – 18 February 2015
...
c | Problem Type: Weighted
c | Number of variables: 18169
c | Number of hard clauses: 94365
c | Number of soft clauses: 18267
c | Parse time: 0.02 s
...
o 10548793370
c LB : 15026590
c Relaxed soft clauses 2 / 18267
c LB : 30053180
c Relaxed soft clauses 3 / 18267
c LB : 45079770
c Relaxed soft clauses 5 / 18267
c LB : 60106360

...
c Relaxed soft clauses 726 / 18267
c LB : 287486453
c Relaxed soft clauses 728 / 18267
o 287486453
c Total time: 1.30 s
c Nb SAT calls: 4
c Nb UNSAT calls: 841
s OPTIMUM FOUND
v 1 -2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16 ...
... -18167 -18168 -18169 -18170



Standard Solver Input Format: DIMACS WCNF
▶ Variables indexed from 1 to n
▶ Negation: -

▶ -3 stand for ¬x3

▶ 0: special end-of-line character
▶ One special header “p”-line:

p wcnf <#vars> <#clauses> <top>
▶ #vars: number of variables n
▶ #clauses: number of clauses
▶ top: “weight” of hard clauses.

▶ Any number larger than
the sum of soft clause weights
can be used.

▶ Clauses represented as lists of integers
▶ Weight is the first number
▶ (−x3 ∨ x1 ∨ ¬x45), weight 2:

2 -3 1 -45 0
▶ Clause is hard if weight == top

Example:
mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB



MaxSAT Evaluations
https://maxsat-evaluations.github.io

Objectives
▶ Assessing the state of the art in the field of MaxSAT solvers
▶ Collecting publicly available MaxSAT benchmark sets
▶ Tens of solvers from various research groups internationally

participate each year
▶ Standard input format
▶ Tracks for both complete and incomplete solvers

15th MaxSAT Evaluation
https://maxsat-evaluations.
github.io/2020

Affiliated with SAT 2020 conference
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Progress in MaxSAT Solver Performance
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Comparing some of the best solvers from 2010–2020:
In 2020: 81% more instances solved than in 2010!
▶ On same computer, same set of benchmarks:

576 unweighted MaxSAT Evaluation 2020 instances



MaxSAT Solving:
Practical Algorithms for

MaxSAT



Types of MaxSAT Solvers

MaxSAT Solver
Practical implementation of an algorithm for finding (optimal)
solutions to MaxSAT instances

Complete vs Incomplete MaxSAT Solvers
▶ Complete:

Guaranteed to output a provably optimal solution to any
instance
(given enough resources (time & space))

▶ “Incomplete”:
Tailored to provide “good” solutions quickly
(potentially) no guarantees on optimality of solutions



Availability: Some Recent MaxSAT Solvers
Examples of recent solvers
Complete
▶ RC2 https://pysathq.github.io/docs/html/api/examples/rc2.html

▶ Maxino https://alviano.net/software/maxino

▶ UWrMaxSAT https://github.com/marekpiotrow/UWrMaxSat

▶ OpenWBO http://sat.inesc-id.pt/open-wbo

▶ MaxHS http://maxhs.org

▶ QMaxSAT https://sites.google.com/site/qmaxsat

Incomplete
▶ Loandra https://github.com/jezberg/loandra

▶ Open-WBO-Inc https://github.com/sbjoshi/Open-WBO-Inc

▶ Open-WBO-TT http://www.cs.tau.ac.il/research/alexander.nadel

▶ SATLike http://lcs.ios.ac.cn/~caisw/MaxSAT.html

https://pysathq.github.io/docs/html/api/examples/rc2.html
https://alviano.net/software/maxino
https://github.com/marekpiotrow/UWrMaxSat
http://sat.inesc-id.pt/open-wbo
http://maxhs.org
https://sites.google.com/site/qmaxsat
https://github.com/jezberg/loandra
https://github.com/sbjoshi/Open-WBO-Inc
http://www.cs.tau.ac.il/research/alexander.nadel
http://lcs.ios.ac.cn/~caisw/MaxSAT.html


Availability

Open Source
Starting from 2017, solvers need to be open-source in order to
participate in MaxSAT Evaluations
▶ Incentive for openness
▶ Allow other to build on and test new ideas on establish solver

source bases
https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/


Complete MaxSAT Solving



Types of Complete Solvers

▶ Branch and Bound
▶ Can be effective of small-but hard & randomly generated

instances
▶ SAT-based MaxSAT algorithms

▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Focus here: SAT-based MaxSAT solving
▶ Make use of iterative SAT solver calls
▶ Key to solving very large real-world problem instances as

MaxSAT



SAT-based MaxSAT
Algorithms



SAT Solvers

Formula SAT Solver

Satisfying
assignment

Unsatisfiable
subformula

SAT

UNSAT



Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

▶ Satisfying assignment:
▶ Assignment to the variables that evaluates the formula to true

▶ τ = {x1 = 1, x2 = 1, x3 = 0}



Satisfying assignment

Formula:

x1 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x3 ∨ ¬x1 x2 ∨ ¬x3

▶ Satisfying assignment:
▶ Assignment to the variables that evaluates the formula to true
▶ τ = {x1 = 1, x2 = 1, x3 = 0}



Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable

▶ Unsatisfiable subformula (core):
▶ F′ ⊆ F, such that F′ is unsatisfiable



Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable
▶ Unsatisfiable subformula (core):

▶ F′ ⊆ F, such that F′ is unsatisfiable



Model-Improving MaxSAT



Upper Bound Search for MaxSAT

F

Find upper bound k for
#unsatisfied soft clauses

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT



Upper Bound Search for MaxSAT

F

Can we unsatisfy
less than k clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

F⇝ F′



Upper Bound Search for MaxSAT

F′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT



Upper Bound Search for MaxSAT

F′′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT



Model-Improving Algorithm
Shortest Path

Intuition

1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1



Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Relax all soft clauses
▶ Relaxation variables:

▶ R = {r1, r2, r3, r4}
▶ If a soft clause ωi is unsatisfied, then ri = 1
▶ If a soft clause ωi is satisfied, then ri = 0



Model-Improving Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

R = {r1, r2, r3, r4}

▶ Formula is satisfiable
▶ τ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

▶ Goal: Minimize number of relaxation variables assigned to 1



Can we unsatisfy less than 2 soft clauses?
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ r2 and r3 were assigned truth value 1:
▶ Current solution unsatisfies 2 soft clauses

▶ Can less than 2 soft clauses be unsatisfied?



Can we unsatisfy less than 2 soft clauses?
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈R ri ≤ 1)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Add cardinality constraint that excludes solutions that
unsatisfies 2 or more soft clauses:
▶ CNF(r1 + r2 + r3 + r4 ≤ 1)



Can we unsatisfy less than 2 soft clauses? No!
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(
∑

ri∈R ri ≤ 1)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Formula is unsatisfiable:
▶ There are no solutions that unsatisfy 1 or less soft clauses



Can we unsatisfy less than 2 soft clauses? No!
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

cost(τ) = 2 R = {r1, r2, r3, r4}

▶ Optimal solution: given by the last model and corresponds
to unsatisfying 2 soft clauses:
▶ τ = {x1 = 1, x2 = 0, x3 = 0}



Model-Improving Algorithm
Summary

▶ Model-improving can be very efficient when:
▶ The number of soft clauses is small
▶ The optimal solution corresponds to unsatisfying the majority

of soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ QMaxSAT [Koshimura, Zhang, Fujita, and Hasegawa, 2012]
▶ Pacose [Paxian, Reimer, and Becker, 2018]

▶ Challenges:
▶ Constraint that restricts the UB grows with the number of soft

clauses (weights of the soft clauses)

▶ Alternatives:
▶ What other kind of search can we perform?
▶ What if we start searching from the lower bound?



Core-Guided MaxSAT
Solving
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Lower Bound Search for MaxSAT
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Lower Bound Search for MaxSAT
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Lower Bound Search for MaxSAT
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Lower Bound Search for MaxSAT
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Unsatisfiability-based Algorithm
Shortest Path

Intuition

1. Check if H ∧ S ∧ CostLessThan(S, LB) is satisfiable
2. If it is unsatisfiable, then increase LB
3. Otherwise, an optimal model τ has been found

LB = 0

LB = 0LB = 1LB = 1LB = {2, . . . 5}LB = 6
SAT-SOLVE(H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE(H ∧ S ∧ CostLessThan(S, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S,LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(S, LB))

Formula is unsatisfiableFormula is unsatisfiableFormula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6
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Unsatisfiability-based algorithm
Summary

▶ Challenges:
▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver that uses this algorithm:
▶ There exists better unsatisfiability-based algorithms

▶ Alternatives:
▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses
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MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1
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▶ Formula is unsatisfiable
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▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core



MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Relax non-relaxed soft clauses in unsatisfiable core:
▶ Add cardinality constraint that excludes solutions that

unsatisfies 2 or more soft clauses:
▶ CNF(r1 + r2 ≤ 1)

▶ Relaxation on demand instead of relaxing all soft clauses
eagerly
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MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
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MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + . . .+ r4 ≤ 2)

S: x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Relax non-relaxed soft clauses in unsatisfiable core:
▶ Add cardinality constraint that excludes solutions that

unsatisfies 3 or more soft clauses:
▶ CNF(r1 + r2 + r3 + r4 ≤ 2)

▶ Relaxation on demand instead of relaxing all soft clauses
eagerly



MSU3 Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H : ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + . . .+ r4 ≤ 2)

S : x1 ∨ r1 x3 ∨ r2 x2 ∨ ¬x1 ∨ r3 ¬x3 ∨ x1 ∨ r4

▶ Formula is satisfiable:
▶ τ = {x1 = 1, x2 = 0, x3 = 0, r1 = 0, r2 = 1, r3 = 1, r4 = 0}

▶ Optimal solution unsatisfies 2 soft clauses



MSU3 Core-Guided Algorithm
Summary

▶ MSU3 algorithm can be very efficient when:
▶ The size of the cores found at each iteration are small
▶ The optimal solution corresponds to satisfying the majority of

soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ Open-WBO [Martins, Manquinho, and Lynce, 2014b]

▶ Challenges:
▶ Constraint that restricts the LB grows with the size of cores
▶ Does not capture local core information:

▶ In 2nd iteration for the shortest path example MSU3 used the
cardinality constraint: (ra + rb + rc + rg ≤ 2)

▶ But at this stage we actually know something stronger:
(ra + rb ≤ 1) and (rc + rg ≤ 1)

▶ Alternatives:
▶ Fu-Malik algorithm encodes each core separately by relaxing

each soft clause multiple times



Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H (Hard): ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S (Soft): x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1
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Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is unsatisfiable
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▶ Formula is unsatisfiable
▶ Identify an unsatisfiable core
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▶ Add relaxation variables
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Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

S: x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ ¬x1 ∨ r5 ¬x3 ∨ x1 ∨ r6

▶ Relax unsatisfiable core:
▶ Add relaxation variables
▶ Add AtMost1 constraint

▶ Soft clauses may be relaxed multiple times



Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3 CNF(r1 + r2 ≤ 1) CNF(r3 + . . .+ r6 ≤ 1)

S: x1 ∨ r1 ∨ r3 x3 ∨ r2 ∨ r4 x2 ∨ ¬x1 ∨ r5 ¬x3 ∨ x1 ∨ r6

▶ Formula is satisfiable
▶ An optimal solution would be:

▶ τ = {x1 = 1, x2 = 0, x3 = 0}



Fu-Malik Core-Guided Algorithm
Solving at the formula level

Partial MaxSAT Formula:

H: ¬x2 ∨ ¬x1 x2 ∨ ¬x3

S: x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1

▶ Formula is satisfiable
▶ An optimal solution would be:

▶ τ = {x1 = 1, x2 = 0, x3 = 0}

▶ This assignment unsatisfies 2 soft clauses



Fu-Malik Core-Guided Algorithm
Summary

▶ Encoding cardinality constraints into CNF is efficient since it
only uses AtMost 1 constraints

▶ Previous MaxSAT solvers that used this algorithm:
▶ WBO [Manquinho, Marques-Silva, and Planes, 2009]
▶ WPM1 [Ansótegui, Bonet, and Levy, 2009]

▶ Challenges:
▶ Number of relaxation variables per soft clause can grow

significantly
▶ Multiple cardinality constraints



Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

Fu-Malik [Fu and Malik, 2006]

▶ First core-guided algorithm for MaxSAT
▶ Uses multiple relaxation variables per soft clause
▶ Only requires AtMost1 constraints



Core-Guided Algorithms
Timeline
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MSU3 [Marques-Silva and Planes, 2007]

▶ Uses one relaxation variable per soft clause
▶ Requires cardinality / pseudo-Boolean constraints



Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

WBO [Manquinho, Marques-Silva, and Planes, 2009]
WPM1 [Ansótegui, Bonet, and Levy, 2009]

▶ Generalizes Fu-Malik algorithm to weighted problems
▶ Efficient implementation of the Fu-Malik algorithm
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WPM2 [Ansótegui, Bonet, and Levy, 2010]

▶ Only one relaxation per soft clause
▶ Group intersecting cores into disjoint covers
▶ Uses a cardinality constraint per cover
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BCD [Heras, Morgado, and Marques-Silva, 2011]

▶ Uses binary search in core-guided algorithms
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OpenWBO [Martins, Joshi, Manquinho, and Lynce, 2014a]

▶ Improves the MSU3 algorithm with incremental construction
of cardinality constraints

▶ Efficient implementation of the MSU3 algorithm
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Eva [Narodytska and Bacchus, 2014]

▶ Uses MaxSAT resolution to refine the formula instead of using
AtMost1 constraints



Core-Guided Algorithms
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OLL [Andres, Kaufmann, Matheis, and Schaub, 2012]
[Morgado, Dodaro, and Marques-Silva, 2014]

WPM3 [Ansótegui, Didier, and Gabàs, 2015]
▶ Introduce new variables to represent cardinality constraints
▶ d = r1 + r2 + r3 ≤ 1
▶ Soft clause (d, 1) is introduced



Core-Guided Algorithms
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OpenWBO.RES [Neves, Martins, Janota, Lynce, and Manquinho, 2015]

▶ Uses resolution-based graphs to partition soft clauses
OpenWBO.RES [Neves, Martins, Janota, Lynce, and Manquinho, 2015]
Maxino [Alviano, Dodaro, and Ricca, 2015]

▶ Construction of the cardinality constraint uses core structure



Core-Guided Algorithms
Timeline
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2007
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RC2 [Ignatiev, Morgado, and Marques-Silva, 2018a]
UWrMaxSat [Piotrow, 2019]
EvalMaxSAT [Avellaneda, 2020]

▶ Efficient implementations of the OLL algorithm
▶ OLL algorithm is currently the most used one



Implicit Hitting Set Algorithms
for MaxSAT

[Davies and Bacchus, 2011, 2013b,a]



Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s ̸= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.



Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s ̸= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.



Hitting Sets and UNSAT Cores

Key insight
To find an optimal solution to a MaxSAT instance F,
it suffices to:
▶ Find an (implicit) hitting set hs of the UNSAT cores of F.

▶ Implicit refers to not necessarily having all MUSes of F.
▶ Find a solution to F \ hs.



Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT
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and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.
Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT



Implicit Hitting Set Approach to MaxSAT

“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Provide explanations for unsatisfiability in terms of cores
▶ Instead of adding clauses to / modifying the input MaxSAT

instance:
each SAT solver call made on a subset of the clauses in the
instance

▶ IP solvers at optimization
▶ Instead of directly solving the input MaxSAT instance:

solve a sequence of simpler hitting set problems over the cores



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

H, S
hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

3. Update core set
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

4. Min-cost HS of K
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

5. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of H ∧ S by hs:
any solution to H ∧ (S \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve H ∧ (S \ ∅)



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := ∅

▶ SAT solve H ∧ (S \ ∅) ⇝ UNSAT core K = {C1,C2,C3,C4}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Update K := K ∪ {K}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Solve minimum-cost hitting set problem over K



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ Solve minimum-cost hitting set problem over K ⇝ hs = {C1}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ SAT solve H ∧ (S \ {C1})



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}}

▶ SAT solve H ∧ (S \ {C1}) ⇝ UNSAT core
K = {C9,C10,C11,C12}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Update K := K ∪ {K}



MaxSAT by SAT and Hitting Set Computation: Example
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C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Solve minimum-cost hitting set problem over K



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C1,C9}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ SAT solve H ∧ (S \ {C1,C9})



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K := {{C1,C2,C3,C4}, {C9,C10,C11,C12}}

▶ SAT solve H ∧ (S \ {C1,C9})
⇝ UNSAT core K = {C3,C4,C7,C8,C11,C12}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Update K := K ∪ {K}



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Solve minimum-cost hitting set problem over K



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ Solve minimum-cost hitting set problem over K
⇝ hs = {C4,C9}



MaxSAT by SAT and Hitting Set Computation: Example
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▶ SAT solve H ∧ (S \ {C4,C9})



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8
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C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3
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{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ SAT solve H ∧ (S \ {C4,C9}) ⇝ SATISFIABLE.



MaxSAT by SAT and Hitting Set Computation: Example

C1 = x6 ∨ x2 C2 = ¬x6 ∨ x2 C3 = ¬x2 ∨ x1
C4 = ¬x1 C5 = ¬x6 ∨ x8 C6 = x6 ∨ ¬x8

C7 = x2 ∨ x4 C8 = ¬x4 ∨ x5 C9 = x7 ∨ x5
C10 = ¬x7 ∨ x5 C11 = ¬x5 ∨ x3 C12 = ¬x3

K :=
{{C1,C2,C3,C4}, {C9,C10,C11,C12}, {C3,C4,C7,C8,C11,C12}}

▶ SAT solve H ∧ (S \ {C4,C9}) ⇝ SATISFIABLE.
Optimal cost: 2 (cost of hs).



Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a disjoint phase for obtaining several cores before/between

hitting set computations,
combinations of greedy and exact hitting sets computations

[Davies and Bacchus, 2011, 2013b,a; Saikko, Berg, and Järvisalo, 2016]

▶ LP-solving techniques such as reduced cost fixing
[Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

▶ abstract cores [Berg, Bacchus, and Poole, 2020]

▶ …

Some of these optimizations are integral for making the solvers
competitive.



Implicit Hitting Set

▶ Effective on range of MaxSAT problems including large ones.
▶ Superior to other methods when there are many distinct

weights.
▶ Usually superior to CPLEX.



Incomplete MaxSAT Solving



Why Incomplete Solving?

▶ Scalability
▶ Proving optimality often the most challenging step of

complete algorithms
▶ Proofs of optimality not always necessary

▶ Finding good solutions fast



From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ In other words: essentially all complete solvers can be seen as

incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?
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From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ In other words: essentially all complete solvers can be seen as

incomplete solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?



Approaches to Incomplete MaxSAT

Model-Improving Incomplete Search
How to improve the model-improving algorithm for incomplete
search.
complete & any-time

Stochastic Local Search (SLS)
Quickly traverse the search space by local changes to current
solution incomplete

Core-Boosted search
Combine core-guided and model-improving search.
complete & any-time

SLS with a SAT solver
Local search over which soft clauses should be satisfied, check with
a SAT solver. incomplete



Model-Improving Algorithm for
Incomplete Solving



Recall
Model-Improving Algorithm

Intuition
Improve a best known solution with a SAT solver until no better
ones can be found.

UB = 10
SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:

▶ Partition soft clauses
▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}
{(¬e), (¬f), (¬g), (¬h)}{(¬e), (¬f), (¬g), (¬h)}
{(¬i), (¬j), (¬k), (¬l)}{(¬i), (¬j), (¬k), (¬l)}
{(¬m), (¬n), (¬o)(¬p)}{(¬m), (¬n), (¬o)(¬p)}
{(¬q), (¬r), (¬t), (¬u)}{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100
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Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}
{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)

MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}
{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)

MODEL-IMPROVE
(
H,S1 ∪ S2)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}
{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}
{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses

▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)

MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses
▶ Rescale weights.

▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Partition soft clauses
▶ Rescale weights.
▶ Core-Boosted Search (more on this later)

H =

{(S), (G), (S → (a + b = 1)),
(a → (c + S = 2)), . . . ,
(b → (S + g = 2)), . . . ,
(g → (b + f + m = 2)), . . . ,
(e → (j + d + l + f = 2)), . . . ,
(G → (q + k + r))}

S =

{(¬a), (¬b), (¬c), (¬d),
(¬e), (¬f), (¬g), (¬h),
(¬i), (¬j), (¬k), (¬l),
(¬m), (¬n), (¬o)(¬p),
(¬q), (¬r), (¬t), (¬u)}

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S1 =

S2 =

S3 =

S4 =

S5 =

{(¬a), (¬b), (¬c), (¬d)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬e), (¬f), (¬g), (¬h)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬i), (¬j), (¬k), (¬l)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬m), (¬n), (¬o)(¬p)}

{(¬q), (¬r), (¬t), (¬u)}

{(¬q), (¬r), (¬t), (¬u)}

MODEL-IMPROVE
(
H,S1)MODEL-IMPROVE
(
H,S1 ∪ S2)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4)MODEL-IMPROVE
(
H,S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5)

S = {(C1, 100), (C2, 1200), (C3, 1540) . . .}

S = {(C1, 1), (C2, 12), (C3, 15) . . .}

Divide by 100



Stochastic Local Search for
Incomplete MaxSAT



SLS for Incomplete MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Intuition
1. Initialise a random assignment.

2. Iteratively flip literals.
3. Check cost of any solutions and update UB when needed.

UB = ∞

UB = 8

τbest = ∅

τbest = τcur

τcur = {S, a, d, h, j, l,G,
¬b,¬c,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(a → (S + c = 2)) = 0

Flip value of: c
τcur = {S, a, c, d, h, j, l,G,

¬b,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(c → (h + d + a = 2)) = 0

Flip value of: d
τcur = {S, a, c, h, j, l,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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Not a solution: τcur(G → (k + r = 1)) = 0

Flip value of: r
τcur = {S, a, c, h, j, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Not a solution: τcur(l → (e + k + r = 2)) = 0

Flip value of: e
τcur = {S, a, c, h, j, e, l, r,G,

¬b,¬d,¬f,¬g, . . . ,¬q}

Not a solution:τcur(h → (n + i + c = 2)) = 0

Flip value of: i
τcur = {S, a, c, h, j, e, i, l, r,G,

¬b,¬d,¬e,¬f,¬g, . . . ,¬q}

Is a solution: cost(τcur) = 8

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:

▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1

▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.
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Core-Boosted Search for Incomplete
MaxSAT



Core-Boosted Search - Intuition
Berg et al. [2019]

Recall - Core-Guided search
▶ Extract a core K
▶ Relax the instance s.t. one clause from K can be unsatisfied in

future iterations
▶ Continue until no more cores can be found.

Alternative view
▶ Any solution to F falsifies at least one clause in K

▶ K proves an additional LB of 1 on cost(F).
▶ ”Relaxing the instance” → ”Lowering cost(F) by 1”
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Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4
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S b g m u

a ? f ? t

c d e l r
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1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Search
Example

Intuition
Cores prove that all paths go through specific nodes.
Reformulating restricts search to paths between the remaining
nodes.

Instance F
Solutions correspond to paths between S and G

cost(F) = 6 i.e
Length of shortest path from S to G

Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Instance
REFORM(F, {(¬a), (¬b)})
Solutions correspond to paths between S and G

cost(F) = 5 i.e
Length of shortest path from either a or b to G

Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Instance
REFORM(F, {(¬a), (¬b)}, {(¬q), (¬k), (¬r)})
Solutions correspond to paths between S and G

cost(F) = 4 i.e
Length of shortest path from either a or b to
either q, k or r

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Further improvements by including SLS prior to core-guided phase.
State-of-the-art performance (in 2020) on unweighted instances.
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Local Search with a SAT Solver



SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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SAT-based SLS
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

Further improvements by more sophisticated ways of
ordering soft clauses

State-of-the-art performance on weighted instances



(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.
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Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years

▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.

Longer answer (in 2020): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.
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Real-World Applications of
MaxSAT:

Package Upgradeability
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Software Package Upgradeability Problem

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

▶ Set of packages we want to install: {p1, p2, p3, p4}
▶ Each package pi has a set of dependencies:

▶ Packages that must be installed for pi to be installed
▶ Each package pi has a set of conflicts:

▶ Packages that cannot be installed for pi to be installed



Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?
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Software Package Upgradeability Problem as SAT

Package Dependencies Conflicts
p1 {p2 ∨ p3} {p4}
p2 {p3} {}
p3 {p2} {p4}
p4 {p2 ∧ p3} {}

How can we encode this problem to Boolean Satisfiability?
▶ Encoding installing all packages:

▶ (p1) ∧ (p2) ∧ (p3) ∧ (p4)



Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ φ = (¬p1 ∨ p2 ∨ p3) ∧ (¬p2 ∨ p3) ∧ (¬p3 ∨ p2) ∧ (¬p4 ∨ p2) ∧
(¬p4∨p3)∧(¬p1∨¬p4)∧(¬p3∨¬p4)∧(p1)∧(p2)∧(p3)∧(p4)
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Software Package Upgradeability Problem as SAT

Formula φ:

Dependencies ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

Conflicts ¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

Packages p1 p2 p3 p4

▶ Formula is unsatisfiable
▶ We cannot install all packages
▶ How many packages can we install?
▶ For example, we can install two packages. Can we do better?



How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:
▶ What are the hard constraints?

▶

▶ What are the soft constraints?
▶



How to encode Software Package Upgradeability?

Software Package Upgradeability problem as MaxSAT:
▶ What are the hard constraints?

▶ Dependencies and conflicts

▶ What are the soft constraints?
▶ Installation of packages



Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

H (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

S (Soft): p1 p2 p3 p4

▶ Dependencies and conflicts are encoded as hard clauses
▶ Installation of packages are encoded as soft clauses
▶ Goal: maximize the number of installed packages
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▶ Installation of packages are encoded as soft clauses
▶ Optimal solution (3 out 4 packages are installed)



Software Package Upgradeability Problem as MaxSAT

MaxSAT Formula:

H (Hard): ¬p1 ∨ p2 ∨ p3 ¬p2 ∨ p3 ¬p3 ∨ p2

¬p4 ∨ p2 ¬p4 ∨ p3 ¬p1 ∨ ¬p4 ¬p3 ∨ ¬p4

S (Soft): p1 p2 p3 p4

▶ Dependencies and conflicts are encoded as hard clauses
▶ Installation of packages are encoded as soft clauses
▶ Optimal solution (3 out 4 packages are installed)

Real-world applications use MaxSAT for this problem:
▶ Dependency management in Eclipse

[Berre and Rapicault, 2018]



Real-World Applications of
MaxSAT in Machine Learning



Explainable Machine Learning

Black Box (Classical) Model

Explainable Model

A sample is Iris Versicolor if
(sepal length > 6.3 OR sepal width > 3

OR petal width ≤ 1.5)
AND

(sepal width ≤ 3 OR petal length > 4
OR petal width > 1.5)

AND
(petal length ≤ 5)

Desirable Properties of ML models
▶ Accuracy (the decisions should be correct)

▶ Interpretability (users should be able to understand the
reasoning)
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A sample is Iris Versicolor if
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OR petal width ≤ 1.5)
AND

(sepal width ≤ 3 OR petal length > 4
OR petal width > 1.5)
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Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:

▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!



Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:

▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!



Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation

▶ Achieves accuracy comparable to other state-of-the-art
methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!



Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation
▶ Achieves accuracy comparable to other state-of-the-art

methods (without sacrificing interpretability).

▶ We’d like to thank the authors for providing material!



Using SAT and MaxSAT toward explainable ML

Two main research directions:
▶ Explaining black box models Ignatiev et al. [2019]; Narodytska

et al. [2019, 2018]
▶ Learning explainable models Ignatiev et al. [2018b]; Maliotov and

Meel [2018]; Ghosh and Meel [2019]

Case Study - Learning Interpretable Classification Rules with
MaxSAT Maliotov and Meel [2018]; Ghosh and Meel [2019]
A MaxSAT based approach for learning classifiers that:
▶ Scales to datasets with thousands of points.

▶ Especially in its incremental formulation
▶ Achieves accuracy comparable to other state-of-the-art

methods (without sacrificing interpretability).
▶ We’d like to thank the authors for providing material!



The problem

A sample is Iris Versicolor if:
(sepal length > 6.3 OR sepal width > 3 OR petal width ≤ 1.5)
AND
(sepal width ≤ 3 OR petal length > 4 OR petal width > 1.5)

data sepal length sepal width petal length petal width
D1 5.5 3.1 4.5 1.6
D2 3.4 3.1 3 1.1

A sample is Iris Versicolor if:

(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)(x1 OR x2 OR ¬x4) AND (¬x2 OR x3 OR x4)

Let:
x1 = (sepal length > 6.3), x2 = (sepal width > 3),
x3 = (petal length > 4), x4 = (petal width > 1.5)

data x1 x2 x3 x4
D1 0 1 1 1
D2 0 1 0 0A CNF-classifier
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Abstract Example

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1

R = (x2 ∨ x3) ∧ (¬x1)

τ1 = {x1 = 1, x2 = 0, x3 = 1} τ1(R) = 0
τ2 = {x1 = 0, x2 = 1, x3 = 1} τ2(R) = 1
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Why Optimization?

d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1 R = (x2 ∨ x3) ∧ (¬x1)

R = (x2)

min
∑

C∈R |C|min
∑

C∈R |C|+ λ
∑

i ϵi

where ϵi = 1 iff di is considered noise
i.e. τ i(R) ̸= yi

Classifiers are not unique.

▶ Desirable properties:

▶ Explainability
▶ Accuracy
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Explainable Classifiers with MaxSAT

Input:
Data:
D = {(d1, y1), . . . , (dm, ym)}
noise weight λ,
#clauses k

Goal:
MaxSAT Instance F
s.t. each solution τ
corresponds to
a CNF classifier
Rτ =

∧k
i=1 Ci with

cost(τ) =
∑

C∈Rτ |C|+ λ
∑

i ϵi

Main Variables (of F):
bt

i , t = 1 . . .m, i = 1 . . . k τ(bt
i ) = 1 if xt ∈ Ci ∈ R

ηi, i = 1 . . . n τ(ηi) = 1 if di is noise
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Clauses in F

Hard Clauses:
Any data point (di, yi) is either noise or correctly classified:

If yi = 1 include ¬ηi →
∧k

j=1 CNF(τ i satisfies Cj).

If yi = 0 include ¬ηi →
∨k

j=1 CNF(τ i falsifies Cj).

Soft Clauses:

Capture the cost function: min
∑

C∈R |C|+ λ
∑

i ϵi
Considering (di, yi) as noise incurs a cost of λ:

(¬ηi), with weight λ
Adding any literal xt to Ci incurs a cost of 1:

(¬bt
i ) with weight 1
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Example

Data:
d1 = (1, 0, 1), y1 = 0
d2 = (0, 1, 1), y2 = 1
k = 2, λ = 2

Rτ = (x2) ∧ (x2)

Hard Clauses
▶ ¬η1 → ¬(b1

1 ∨ b3
1) ∨ ¬(b1

2 ∨ b3
2)

▶ ¬η2 → (b2
1 ∨ b3

1) ∧ (b2
2 ∨ b3

2)

Soft clauses
▶ (¬b1

1), (¬b2
1), (¬b3

1), (¬b1
2), (¬b2

2), (¬b3
2) weight 1

▶ (¬η1), (¬η2) weight 2.
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More on Modelling with
MaxSAT



Representing High-level Soft Constraints

Basic Idea
Finite-domain soft constraint C with associated weight WC .
Let CNF(C) =

∧m
i=1 Ci be a CNF encoding of C.

Softening CNF(C) as Weighted Partial MaxSAT:
▶ Hard clauses:

∧m
i=1(Ci ∨ a),

where a is a fresh Boolean variable
▶ Soft clause: (¬a) with weight WC .

Important for various applications of MaxSAT



Handling Non-Integer Weights

Problem
MaxSAT supports (by definition and input format) only integer
weights on soft clauses. The objective function of my problem has
real-valued weights.

Solution
Scale weight range to 64-bit representation range & truncate to
integers.
▶ Standard trick when applying MaxSAT solvers
▶ Solvers less and less volative in terms of large weights
▶ While some accuracy may be lost, similar issues are standardly

seen e.g. when applying mixed-linear integer programming



Tools for Modelling and Building Solvers
Preprocessing: simplifying encodings before solving
▶ MaxPre [Korhonen, Berg, Saikko, and Järvisalo, 2017]

▶ Coprocessor [Manthey, 2012]

Automated encoding of high-level constraints
▶ MaxPre: extends input language to cardinality constraints
▶ Room for improvement in terms of easy-to-use tools!

PySAT: Python library for prototyping solvers
▶ Offers easy interfacing with SAT solvers

[Ignatiev, Morgado, and Marques-Silva, 2018a]

▶ Cardinality constraint support built-in
▶ Efficient: one of the most recent efficient core-guided solvers,

RC2, is PySAT-based



Applying MaxSAT to New Domains

▶ How to model problem X as MaxSAT?
▶ Developing compact encodings
▶ Redundant constraints via insights into the problem domain
▶ Representation of weights
▶ …

▶ Understanding the interplay between encodings and solver
techniques
▶ Encodings: compactness vs. propagation
▶ Underlying core-structure of encodings
▶ The “best” solvers for current benchmark sets may not be best

for novel applications!
▶ Requires trial-and-error & in-depth understanding of solvers

and the problem domain



Summary



MaxSAT
▶ Low-level constraint language:

weighted Boolean combinations of binary variables
▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ MaxSAT solvers:

▶ build on top of highly efficient SAT solver technology
▶ various alternative approaches:

branch-and-bound, model-improving, core-guided, IHS, …
▶ standard WCNF input format
▶ yearly MaxSAT solver evaluations

Success of MaxSAT
▶ Attractive alternative to other constrained optimization

paradigms
▶ Number of applications increasing
▶ Solver technology improving rapidly



Topics Covered

▶ Basic concepts
▶ Survey of some of the currently most relevant solving

algorithms
▶ model-improving
▶ core-guided
▶ SAT-IP hybrids based on the implicit hitting set approach
▶ incomplete solving

▶ Modelling with MaxSAT
▶ ideas for how to encode different problems as MaxSAT
▶ understanding some of the benefits of using MaxSAT



Further Topics and Research Directions
Incomplete Solving
Quick recent progress suggests that further improvements are to be
expected

Preprocessing
How to simplify MaxSAT instances to make them easier for
solver(s)?
▶ Recent progress:

▶ Lifting SAT-based techniques
[Belov, Morgado, and Marques-Silva, 2013; Berg and Järvisalo, 2019]

▶ Native MaxSAT techniques
[Berg, Saikko, and Järvisalo, 2015b,a, 2016; Korhonen, Berg, Saikko, and

Järvisalo, 2017]
▶ Analysis [Berg and Järvisalo, 2016, 2019]

▶ Challenge: effective integration with MaxSAT algorithms
▶ Inprocessing MaxSAT solving?

(In analogy to SAT [Järvisalo, Heule, and Biere, 2012])



Further Topics and Research Directions
Parallel Solving
How to truly make use of massively parallel computing
infrastructures for MaxSAT?
▶ Obtaining linear speed-ups (or even more) turned out to be

highly non-trivial to obtain, similarly as in SAT solving
▶ Some progress, but much more unleashed potential

[Martins, Manquinho, and Lynce, 2011, 2012; van der Tak, Heule, and Biere,
2012; Terra-Neves, Lynce, and Manquinho, 2016]

Support for Incremental Computations
Solving several related instances without computing from scratch
▶ Solving huge MaxSAT instances
▶ Applying MaxSAT to solve beyond-NP optimization problems
▶ Applications benefiting from incremental computations
▶ Currently, few solvers offer (restricted) incremental APIs

[Saikko, Berg, and Järvisalo, 2016]



Further Reading and Links

Surveys
▶ “Maximum Satisfiability” by Bacchus, Järvisalo & Martins

▶ Chapter in forthcoming vol. 2 of Handbook of Satisfiability
▶ Preprint available, link on tutorial webpage

▶ Somewhat older surveys:
▶ Handbook chapter on MaxSAT: [Li and Manyà, 2009]
▶ Surveys on MaxSAT algorithms:

[Ansótegui, Bonet, and Levy, 2013a]
[Morgado, Heras, Liffiton, Planes, and Marques-Silva, 2013a]

MaxSAT Evaluations
https://maxsat-evaluations.github.io
Most recent report: [Bacchus, Järvisalo, and Martins, 2019]

https://maxsat-evaluations.github.io


Thank you for attending!
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